Loigiaihay.com 2024

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 94 trang 140 Sách bài tập Hình học lớp 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho hình lập phương ABCD.A’B’C’D’

Cho hình lập phương ABCD.ABCD cạnh bằng a. Xét hai điểm M trên AD’ và N trên DB sao cho  AM= DN= k (0< k <a\(\sqrt 2 \) ). Gọi P là trung điểm B’C’.

a) Tính cos của góc giữa hai đường thẳng AP và BC’.

b) Tính thể tích khối tứ diện APBC’.

c) Chứng minh MN luôn song song với mặt phẳng (A’D’CB) khi k thay đổi.

d) Tìm k để đoạn MN ngắn nhất.

e) Khi đoạn MN ngắn nhất, chứng minh rằng MN là đường vuông góc chung của AD’ và DB, đồng thời MN song song với A’C.

Giải

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA' (h.105).

Khi đó :

         \(\eqalign{  & A = \left( {0;0;0} \right)  \cr  & B = \left( {a;0;0} \right)  \cr  & D = \left( {0;a;0} \right)  \cr  & C = \left( {a;a;0} \right) \cr} \)  \(\eqalign{  & A' = \left( {0;0;a} \right)  \cr  & B' = \left( {a;0;a} \right)  \cr  & D' = \left( {0;a;a} \right)  \cr  & C' = \left( {a;a;a} \right) \cr} \)

          \(P = \left( {a;{a \over 2};a} \right)\)

a) Ta có \(\overrightarrow {AP}  = \left( {a;{a \over 2};a} \right)\)

                       \(\overrightarrow {BC'}  = \left( {0;a;a} \right).\)

Gọi \(\alpha \) là góc giữa hai đường thẳng \(AP\) và \(BC'\) ta có :

         \(\cos \alpha  = {{\left| {0 + {{{a^2}} \over 2} + {a^2}} \right|} \over {\sqrt {{a^2} + {{{a^2}} \over 2} + {a^2}} .\sqrt {{a^2} + {a^2}} }} = {1 \over {\sqrt 2 }} \Rightarrow \alpha  = {45^o}\)

b) Ta có : \(\overrightarrow {AP}  = \left( {a;{a \over 2};a} \right)\), \(\overrightarrow {AB}  = {\rm{ }}\left( {a;0;0} \right),\overrightarrow {AC'}  = (a;a;a)\)

\(\eqalign{  &  \Rightarrow \left[ {\overrightarrow {AP} ,\overrightarrow {AB} } \right] = \left( {\left| {\matrix{   {{a \over 2}} & a  \cr   0 & 0  \cr  } } \right|;\left| {\matrix{   a & a  \cr   0 & a  \cr  } } \right|;\left| {\matrix{   a & {{a \over 2}}  \cr   a & 0  \cr  } } \right|} \right) \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= \left( {0;{a^2}; - {{{a^2}} \over 2}} \right)  \cr  &  \Rightarrow \left[ {\overrightarrow {AP} ,\overrightarrow {AB} } \right].\overrightarrow {AC'}  = 0 + {a^3} - {{{a^3}} \over 2} = {{{a^3}} \over 2}. \cr} \)

Vậy \({V_{APBC'}} = {1 \over 6}\left| {\left[ {\overrightarrow {AP} ,\overrightarrow {AB} } \right].\overrightarrow {AC'} } \right| = {1 \over 6}.{{{a^3}} \over 2} = {{{a^3}} \over {12}}.\) 

c) Mặt phẳng \(\left( {A'D'CB} \right)\) song song với trục Oy nên có phương trình :

       \(px{\rm{ }} + {\rm{ }}qz{\rm{ }} + {\rm{ }}n{\rm{ }} = 0\) \(\left( {n \ne 0,{p^2} + {q^2} > 0} \right).\)

Vì mặt phẳng này đi qua \(A',B,C\) nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp\(\left( {A'D'CB} \right)\) là \(x + z - {\rm{ }}a = {\rm{ }}0\). Vectơ pháp tuyến của mặt phẳng này là \(\overrightarrow n  = {\rm{ }}\left( {1{\rm{ }};{\rm{ }}0{\rm{ }};{\rm{ }}1} \right).\)

Từ giả thiết \(M \in AD',{\rm{ }}N \in DB;{\rm{ }}AM = {\rm{ }}DN = k\), ta tính được :

                      \(M = \left( {0;{k \over {\sqrt 2 }};{k \over {\sqrt 2 }}} \right),N = \left( {{k \over {\sqrt 2 }};{{a\sqrt {2 } -k} \over {\sqrt 2 }};0} \right).\)

Suy ra \(\overrightarrow {MN}  = \left( {{k \over {\sqrt 2 }};{{a\sqrt {2 } -2k} \over {\sqrt 2 }}; - {k \over {\sqrt 2 }}} \right).\)

Ta có \(\overrightarrow {MN} .\overrightarrow n  = 1.{k \over {\sqrt 2 }} + 0\left( {{{a\sqrt {2 }-2 k} \over {\sqrt 2 }}} \right) + 1.\left( { - {k \over {\sqrt 2 }}} \right) = 0\)

\(\Rightarrow \overrightarrow {MN}  \bot \overrightarrow n .\)

Rõ ràng \(N \notin mp\left( {A'D'CB} \right).\) Suy ra MN song song với mp\(\left( {A'D'CB} \right).\)

d) Ta có \(M{N^2} = {\left( {{k \over {\sqrt 2 }}} \right)^2} + {\left( {{{a\sqrt {2 }-2 k} \over {\sqrt 2 }}} \right)^2} + {\left( { - {k \over {\sqrt 2 }}} \right)^2}.\)

\(\eqalign{  &  = 3{k^2} - 2a\sqrt 2 k + {a^2}  \cr  &  = 3\left[ {{{\left( {k - {{a\sqrt 2 } \over 3}} \right)}^2} + {{{a^2}} \over 9}} \right] \ge 3{{{a^2}} \over 9} = {{{a^2}} \over 3}. \cr} \)

\(M{N^2}\) nhỏ nhất bằng \({{{a^2}} \over 3}\) khi \(k = {{a\sqrt 2 } \over 3}\) (thoả mãn điều kiện \(0{\rm{ }} < k{\rm{ }} < {\rm{ }}a\sqrt 2 \) ).

Vậy MN ngắn nhất bằng \({{a\sqrt 3 } \over 3}\) khi \(k = {{a\sqrt 2 } \over 3}\).

e) Khi MN ngắn nhất thì \(k = {{a\sqrt 2 } \over 3}\) Khi đó \(\overrightarrow {MN}  = \left( {{a \over 3};{a \over 3};{{ - a} \over 3}} \right).\)

Ta lại có \(\overrightarrow {AD'}  = {\rm{ }}\left( {0;a;{\rm{ }}a} \right),\overrightarrow {DB} {\rm{ }} = (a; - a;0)\) nên \(\overrightarrow {MN} .\overrightarrow {AD'}  = {\rm{ }}0,\overrightarrow {MN} .\overrightarrow {DB}  = {\rm{ }}0.\)

Vậy MN là đường vuông góc chung của AD' và DB.

Mặt khác \(\overrightarrow {A'C}  = \left( a;a; - a\right) = 3\overrightarrow {MN} \), chứng tỏ \(\overrightarrow {MN} \), \(\overrightarrow {A'C} \) cùng phương. Do \(N \not\in A'C\)  nên \(MN//A'C.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2024 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Bài viết liên quan