Bài 1 trang 118 SGK Toán 7 tập 2 - Cánh Diều
Cho tam giác ABC có H là trực tâm, H không trùng với đỉnh nào của tam giác. Nêu một tính chất của cặp đường thẳng:
a) AH và BC; b) BH và CA; c) CH và AB.
Phương pháp:
Trực tâm của tam giác là giao điểm của ba đường cao của tam giác đó.
Lời giải:
a) H là trực tâm của tam giác ABC nên AH ⊥ BC.
b) H là trực tâm của tam giác ABC nên BH ⊥ CA.
c) H là trực tâm của tam giác ABC nên CH ⊥ AB.
Bài 2 trang 118 SGK Toán 7 tập 2 - Cánh Diều
Cho tam giác ABC. Vẽ trực tâm H của tam giác ABC và nhận xét vị trí của nó trong các trường hợp sau:
a) Tam giác ABC nhọn;
b) Tam giác ABC vuông tại A;
c) Tam giác ABC có góc A tù.
Phương pháp:
Vẽ trực tâm H của tam giác ABC trong từng trường hợp và nhận xét.
(Trực tâm là giao điểm của ba đường cao của tam giác đó).
Lời giải:
a) Ta có hình vẽ sau:
Ta thấy H nằm trong tam giác ABC.
b) Ta có hình vẽ sau:
Ta thấy trong tam giác ABC: AB ⊥ AC, AC ⊥ AB.
Do đó AB và AC là hai đường cao của tam giác ABC.
Mà AB cắt AC tại A nên A là trực tâm của tam giác ABC.
Do đó A trùng H.
c) Ta có hình vẽ sau:
Ta thấy H nằm ngoài tam giác ABC.
Bài 3 trang 118 SGK Toán 7 tập 2 - Cánh Diều
Cho tam giác nhọn ABC và điểm D nằm trong tam giác. Chứng minh rằng nếu DA vuông góc với BC và DB vuông góc CA thì DC vuông góc với AB.
Phương pháp:
Ba đường cao của tam giác giao nhau tại một điểm.
Lời giải:
Tam giác ABC có DA ⊥ BC, DB ⊥ CA.
Mà DA cắt DB tại D nên D là trực tâm của tam giác ABC.
Do đó DC ⊥ AB.
Bài 4 trang 118 SGK Toán 7 tập 2 - Cánh Diều
Cho tam giác nhọn ABC. Hai đường cao BE và CF cắt nhau tại H, \(\widehat {HCA} = 25^\circ \). Tính \(\widehat {BAC}\)và \(\widehat {HBA}\).
Phương pháp:
Tổng hai góc nhọn trong một tam giác vuông bằng 90°.
Lời giải:
Bài 5 trang 118 SGK Toán 7 tập 2 - Cánh Diều
Trong Hình 139, cho biết AB // CD, AD // BC; H, K lần lượt là trực tâm các tam giác ABC và ACD. Chứng minh AK // CH và AH // CK.
Phương pháp:
Áp dụng tính chất:
+ Nếu \(a//b; a \bot c \) thì \(b \bot c\)
+ Nếu \(a \bot c; b \bot c\) thì \(a//b\)
Lời giải:
Do H là trực tâm của tam giác ABC nên CH ⊥ AB và AH ⊥ BC.
Do K là trực tâm của tam giác ADC nên AK ⊥ CD và CK ⊥ AD.
Do AB // CD nên AK ⊥ AB.
Mà CH ⊥ AB nên AK // CH.
Do AD // BC nên AH ⊥ AD.
Mà CK ⊥ AD nên AH // CK.
Bài 6 trang 118 SGK Toán 7 tập 2 - Cánh Diều
Cho tam giác ABC có G là trọng tâm, H là trực tâm, I là giao điểm của ba đường phân giác, O là giao điểm của ba đường trung trực. Chứng minh rằng:
a) Nếu tam giác ABC đều thì bốn điểm G, H, I, O trùng nhau;
b) Nếu tam giác ABC có hai điểm trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều.
Phương pháp:
a) Trong tam giác đều: đường trung tuyến đồng thời là đường cao và đường phân giác.
b) Chứng minh hai trong bốn điểm G, H, I, O trùng nhau thì tam giác ABC là tam giác đều: Chứng minh G và O trùng nhau thì tam giác ABC là tam giác đều.
Lời giải:
Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB.
b)
Gọi M, N, P lần lượt là chân đường cao kẻ từ H đến BC, CA, AB.
Khi đó HN ⊥ AC.
Mà H là trực tâm của ∆ABC nên BH ⊥ AC.
HN ⊥ AC, BH ⊥ AC nên B, H, N thẳng hàng.
Xét ∆APH vuông tại P và ∆CMH vuông tại M có:
Xét ∆HNA vuông tại N và ∆HNC vuông tại N có:
HN chung.
HA = HC (chứng minh trên).
Do đó ∆HNA = ∆HNC (2 cạnh góc vuông).
Suy ra AN = CN (2 cạnh tương ứng).
Khi đó N là trung điểm của AC.
HN ⊥ AC tại trung điểm N của AC nên HN là đường trung trực của đoạn thẳng AC.
Mà B, H, N thẳng hàng nên B thuộc đường trung trực của đoạn thẳng AC.
Do đó BA = BC.
Thực hiện tương tự, ta chứng minh được CA = CB.
Do đó AB = BC = CA.
Vậy tam giác ABC đều.
Sachbaitap.com
Bài viết liên quan