Bài 15 trang 15 SGK Toán lớp 9 tập 2
Câu hỏi:
Giải hệ phương trình \(\left\{\begin{matrix} x + 3y = 1 & & \\ (a^{2} + 1)x + 6y = 2a & & \end{matrix}\right.\) trong mỗi trường hợp sau:
a) \(a = -1\)
b) \(a = 0\)
c) \(a = 1\)
Lời giải:
a)
Thay \(a = -1\) vào hệ, ta được:
\(\left\{\begin{matrix} x + 3y = 1 & & \\ {\left((-1)^2+1 \right)}x+ 6y = 2.(-1) & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} x + 3y = 1 & & \\ 2x+ 6y = -2 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x + 3y = 1 & & \\ x+ 3y = -1 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x = 1 -3y & & \\ (1-3y)+ 3y = -1 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} x = 1 -3y & & \\ 1 = -1 (vô \ lý )& & \end{matrix}\right.\)
Vậy hệ phương trình trên vô nghiệm.
b)
Thay \(a = 0\) vào hệ, ta được:
\(\left\{ \matrix{
x + 3y = 1 \hfill \cr
\left( {0 + 1} \right)x + 6y = 2.0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
x + 6y = 0 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
x = - 6y \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
- 6y + 3y = 1 \hfill \cr
x = - 6y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
- 3y = 1 \hfill \cr
x = - 6y \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr
x = - 6y \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr
x = - 6. \dfrac{ - 1}{3} \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = \dfrac{ - 1}{3} \hfill \cr
x = 2 \hfill \cr} \right.\)
Hệ phương trình có nghiệm \( {\left(2; -\dfrac{1}{3} \right)} \).
c)
Thay \(a = 1\) vào hệ, ta được:
\(\left\{ \matrix{
x + 3y = 1 \hfill \cr
({1^2} + 1)x + 6y = 2.1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
2x + 6y = 2 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
x + 3y = 1 \hfill \cr
x + 3y = 1 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = 1 - 3y\\1 - 3y + 3y = 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1 - 3y\\1 = 1\left( {luôn\,đúng} \right)\end{array} \right.\)
Vậy hệ phương trình có vô số nghiệm \(\left\{ \begin{array}{l}x = 1 - 3y\\y \in \mathbb{R}\end{array} \right.\)
Bài 16 trang 16 SGK Toán lớp 9 tập 2
Câu hỏi:
Giải các hệ phương trình sau bằng phương pháp thế.
a) \(\left\{\begin{matrix} 3x - y = 5 & & \\ 5x + 2y = 23 & & \end{matrix}\right.\)
b) \(\left\{\begin{matrix} 3x +5y = 1 & & \\ 2x -y =-8 & & \end{matrix}\right.\)
c) \(\left\{\begin{matrix} \dfrac{x}{y} = \dfrac{2}{3}& & \\ x + y - 10 = 0 & & \end{matrix}\right.\)
Lời giải:
a) Ta có:
\(\left\{ \matrix{
3x - y = 5 \hfill \cr
5x + 2y = 23 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
5x + 2\left( {3x - 5} \right) = 23 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
5x + 6x - 10 = 23 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
11x = 23 + 10 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
11x = 33 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
y = 3x - 5 \hfill \cr
x = 3 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
y = 3.3 - 5 \hfill \cr
x = 3 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 4 \hfill \cr
x = 3 \hfill \cr} \right.\)
Vậy hệ có nghiệm duy nhất là \((x; y) = (3; 4)\).
b)
Ta có:
\(\left\{ \matrix{
3x + 5y = 1 \hfill \cr
2x - y = - 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
3x + 5y = 1 \hfill \cr
y = 2x + 8 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
3x + 5\left( {2x + 8} \right) = 1 \hfill \cr
y = 2x + 8 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
3x + 10x + 40 = 1 \hfill \cr
y = 2x + 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
13x = 1 - 40 \hfill \cr
y = 2x + 8 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
13x = - 39 \hfill \cr
y = 2x + 8 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = - 3 \hfill \cr
y = 2x + 8 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
x = - 3 \hfill \cr
y = 2.\left( { - 3} \right) + 8 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
x = - 3 \hfill \cr
y = 2 \hfill \cr} \right.\)
Vậy hệ có nghiệm \((x; y) = (-3; 2)\).
c)
Ta có:
\(\left\{ \matrix{
\dfrac{x}{y} = \dfrac{2}{3} \hfill \cr
x + y - 10 = 0 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \dfrac{2y}{3} \hfill \cr
\dfrac{2y}{3} + y = 10 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
x = \dfrac{2y}{3} \hfill \cr
{\left( \dfrac{2}{3} + 1 \right)}y = 10 \hfill \cr} \right.\)
\( \Leftrightarrow \left\{ \matrix{
x = \dfrac{2y}{3} \hfill \cr
\dfrac{5}{ 3}y = 10 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = \dfrac{2y}{3} \hfill \cr
y = 6 \hfill \cr} \right. \)
\(\Leftrightarrow \left\{ \matrix{
x = \dfrac{2.6}{3} \hfill \cr
y = 6 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x = 4 \hfill \cr
y = 6 \hfill \cr} \right.\)
Vậy nghiệm của hệ là \((x; y) = (4; 6)\).
Bài 17 trang 16 SGK Toán lớp 9 tập 2
Câu hỏi:
Giải hệ phương trình sau bằng phương pháp thế.
a) \(\left\{\begin{matrix} x\sqrt{2}- y \sqrt{3}=1 & & \\ x + y\sqrt{3} = \sqrt{2}& & \end{matrix}\right.\)
b) \(\left\{\begin{matrix} x - 2\sqrt{2} y = \sqrt{5}& & \\ x\sqrt{2} + y = 1 - \sqrt{10}& & \end{matrix}\right.\)
c) \(\left\{\begin{matrix} (\sqrt{2}- 1)x - y = \sqrt{2}& & \\ x + (\sqrt{2}+ 1)y = 1& & \end{matrix}\right.\)
Lời giải:
a)
Ta có:
\(\left\{ \matrix{
x\sqrt 2 - y\sqrt 3 = 1 \hfill \cr
x + y\sqrt 3 = \sqrt 2 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
x\sqrt 2 - y\sqrt 3 = 1 \hfill \cr
x = \sqrt 2 - y\sqrt 3 \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
\left( {\sqrt 2-y\sqrt 3 } \right)\sqrt 2 - y\sqrt 3 = 1 \ (1) \hfill \cr
x = \sqrt 2 - y\sqrt 3 \ (2) \hfill \cr} \right.\)
Giải phương trình \((1)\), ta được:
\(( \sqrt 2 - y\sqrt 3)\sqrt 2 - y\sqrt 3 = 1\)
\( \Leftrightarrow (\sqrt 2)^2 - y\sqrt 3 . \sqrt 2 - y\sqrt 3 = 1 \)
\( \Leftrightarrow 2 - y\sqrt 3 . \sqrt 2 - y\sqrt 3 = 1 \)
\( \Leftrightarrow -y\sqrt 3. \sqrt 2 - y\sqrt 3 = 1 - 2\)
\(\begin{array}{l}
\Leftrightarrow - y\sqrt 6 - y\sqrt 3 = - 1\\
\Leftrightarrow y\left( {\sqrt 6 + \sqrt 3 } \right) = 1\\
\Leftrightarrow y = \dfrac{1}{{\sqrt 6 + \sqrt 3 }}\\
\Leftrightarrow y = \dfrac{{\sqrt 6 - \sqrt 3 }}{3}\\
\Leftrightarrow y = \dfrac{{\sqrt 3 \left( {\sqrt 2 - 1} \right)}}{3}
\end{array}\)
Thay \(y\) tìm được vào phương trình \((2)\), ta được:
\(x = \sqrt 2 - \dfrac{\sqrt 3 (\sqrt 2 -1)}{3}.\sqrt 3\)
\( \Leftrightarrow x=\sqrt 2 - \dfrac{\sqrt 3 .\sqrt 3(\sqrt 2 -1)}{3} \)
\(\Leftrightarrow x=\sqrt 2 - \dfrac{ 3(\sqrt 2 -1)}{3} =\sqrt 2 - (\sqrt 2 -1) \)
\(\Leftrightarrow x=\sqrt 2 -\sqrt 2 +1=1.\)
Vậy hệ phương trình đã cho có nghiệm duy nhất là: \( {\left( 1;\dfrac{\sqrt 3 (\sqrt 2 -1)}{3} \right)}\)
b)
Ta có:
\(\left\{ \matrix{
x - 2\sqrt 2 y = \sqrt 5 \hfill \cr
x\sqrt 2 + y = 1 - \sqrt {10} \hfill \cr} \right.\)
\(\Leftrightarrow \left\{ \matrix{
x = 2\sqrt 2 y + \sqrt 5 \ (1) \hfill \cr
\left( {2\sqrt 2 y + \sqrt 5 } \right).\sqrt 2 + y = 1 - \sqrt {10}\ (2) \hfill \cr} \right.\)
Giải phương trình \((2)\), ta được:
\(\left( {2\sqrt 2 y + \sqrt 5 } \right).\sqrt 2 + y = 1 - \sqrt {10}\)
\(\Leftrightarrow 2(\sqrt 2 .\sqrt 2)y + \sqrt 5 .\sqrt 2 + y = 1 - \sqrt {10}\)
\(\Leftrightarrow 4y + \sqrt{10}+y=1- \sqrt{10}\)
\(\Leftrightarrow 4y +y=1- \sqrt{10}- \sqrt{10} \)
\(\Leftrightarrow 5y=1-2 \sqrt{10}\)
\(\Leftrightarrow y=\dfrac{1-2 \sqrt{10}}{5}\)
Thay \(y=\dfrac{1-2 \sqrt{10}}{5}\) vào \((1)\), ta được:
\(x = 2\sqrt 2 .\dfrac{1-2 \sqrt{10}}{5} + \sqrt 5= \dfrac{2\sqrt 2 -4 \sqrt{20}}{5} + \sqrt 5\)
\(\Leftrightarrow x=\dfrac{2\sqrt 2 -4 .2\sqrt{5}}{5} + \sqrt 5=\dfrac{2\sqrt 2 -8\sqrt{5}+ 5\sqrt 5}{5}\)
\(\Leftrightarrow x=\dfrac{2 \sqrt 2 -3 \sqrt 5}{5}\)
Vậy hệ có nghiệm duy nhất là: \((x; y)\) = \({\left(\dfrac{2\sqrt{2} - 3\sqrt{5}}{5};\dfrac{1 - 2\sqrt{10}}{5}\right)}\)
c)
Ta có:
\(\left\{ \matrix{
\left( {\sqrt 2 - 1} \right)x - y = \sqrt 2 \hfill \cr
x + \left( {\sqrt 2 + 1} \right)y = 1 \hfill \cr} \right. \)
\(\left\{ \begin{array}{l}y = \left( {\sqrt 2 - 1} \right)x - \sqrt 2 \,\,\,\,\,\left( 1 \right)\\x + \left( {\sqrt 2 + 1} \right)\left[ {\left( {\sqrt 2 - 1} \right)x - \sqrt 2 } \right] = 1\,\,\,\left( 2 \right)\end{array} \right.\)
Giải phương trình \((2)\), ta được:
\(x + \left( {\sqrt 2 + 1} \right)\left[ { \left( {\sqrt 2 - 1} \right)x} -\sqrt 2 \right] = 1\)
\(\Leftrightarrow x + (\sqrt 2 + 1) (\sqrt 2 - 1)x -( \sqrt 2 + 1). \sqrt 2 = 1\)
\(\Leftrightarrow x + {\left((\sqrt 2)^2 - 1^2 \right)}x-( 2 + \sqrt 2) = 1\)
\(\Leftrightarrow x + x = 1+( 2 + \sqrt 2)\)
\(\Leftrightarrow 2x =3 +\sqrt 2\)
\(\Leftrightarrow x=\dfrac{3+ \sqrt 2}{2}\)
Thay \(x=\dfrac{3+ \sqrt 2}{2}\) vào \((1)\), ta được:
\(y = \left( {\sqrt 2 - 1} \right).\dfrac{3+ \sqrt 2}{2} - \sqrt 2\)
\( \Leftrightarrow y= \dfrac{(\sqrt 2 - 1 )(3+ \sqrt 2)}{2} - \sqrt 2 \)
\( \Leftrightarrow y= \dfrac{3\sqrt 2 -3 +2 -\sqrt 2}{2} - \sqrt 2 \)
\( \Leftrightarrow y= \dfrac{2\sqrt 2 -1}{2} - \sqrt 2 \)
\( \Leftrightarrow y= \dfrac{2\sqrt 2 -1-2\sqrt 2}{2} \)
\( \Leftrightarrow y= \dfrac{-1}{2} \)
Vậy hệ có nghiệm \((x; y) = {\left(\dfrac{3 + \sqrt{2}}{2};\dfrac{-1}{2} \right)}\)
Bài 18 trang 16 SGK Toán lớp 9 tập 2
Câu hỏi:
a) Xác định các hệ số \(a\) và \(b\), biết rằng hệ phương trình
\(\left\{\begin{matrix} 2x + by=-4 & & \\ bx - ay=-5& & \end{matrix}\right.\)
có nghiệm là \((1; -2)\)
b) Cũng hỏi như vậy, nếu hệ phương trình có nghiệm là \((\sqrt{2} - 1; \sqrt{2})\).
Phương pháp:
a) Thay \(x=1,\ y=-2\) vào hệ ban đầu ta được hệ hai phương trình bậc nhất hai ẩn \(a,\ b\).
Giải hệ mới ta tìm được \(a,\ b\).
b) Thay \(x=\sqrt{2} - 1; y=\sqrt{2}\) vào hệ ban đầu ta được hệ hai phương trình bậc nhất hai ẩn \(a,\ b\).
Giải hệ mới ta tìm được \(a,\ b\).
Lời giải:
a) Hệ phương trình có nghiệm là \((1; -2)\) khi và chỉ khi \((1; -2)\) thỏa mãn hệ phương trình. Thay \(x=1,\ y=-2\) vào hệ, ta có:
\(\left\{\begin{matrix} 2 - 2b=-4 & & \\ b+2a=-5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2b=6 & & \\ b+2a=-5 & & \end{matrix}\right. \)
\( \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ b+2a=-5 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 3+2a=-5 & & \end{matrix}\right. \)
\(\Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 2a = -5 - 3& & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} b=3 & & \\ 2a = -8& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b=3 & & \\ a = -4 & & \end{matrix}\right.\)
Vậy \(a=-4,\ b=3\) thì hệ có nghiệm là \((1; -2)\).
b) Thay \(x=\sqrt 2 - 1;\ y= \sqrt 2\) vào hệ phương trình đã cho, ta có:
\(\left\{\begin{matrix} 2(\sqrt{2}-1)+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2\sqrt{2}-2+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} 2\sqrt{2}-2+b\sqrt{2}= -4 & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b\sqrt{2}= -2 - 2\sqrt{2} & & \\ (\sqrt{2}-1)b - a\sqrt{2}= -5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b= -(2 + \sqrt{2}) & & \\ a\sqrt{2}= -(2 + \sqrt{2})(\sqrt{2}-1)+5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} b= -(2 + \sqrt{2}) & & \\ a\sqrt{2}= -\sqrt{2}+5& & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a = \dfrac{-2+5\sqrt{2}}{2} & & \\ b = -(2+ \sqrt{2})& & \end{matrix}\right.\)
Vậy \(a = \dfrac{-2+5\sqrt{2}}{2},\ b=-(2+ \sqrt{2})\) thì hệ trên có nghiệm là \((\sqrt 2 -1; \sqrt 2)\).
Bài 19 trang 16 SGK Toán lớp 9 tập 2
Câu hỏi:
Biết rằng: Đa thức \(P(x)\) chia hết cho đa thức \(x - a\) khi và chỉ khi \(P(a) = 0\).
Hãy tìm các giá trị của \(m\) và \(n\) sao cho đa thức sau đồng thời chia hết cho \(x + 1\) và \(x - 3\):
\(P(x) = m{x^3} + (m - 2){x^2} - (3n - 5)x - 4n\)
Phương pháp:
Sử dụng tính chất:
+) \(P(x)\) chia hết cho \((x - a)\) khi và chỉ khi \(P(a) = 0\)
+) \(P(x)\) chia hết cho \((x+a)\) khi và chỉ khi \(P(-a)=0\).
+) Thay các giá trị nghiệm vào đa thức \(P(x)\), ta thu được các phương trình bậc nhất hai ẩn. Lập hệ và giải hệ đó.
Lời giải:
+) Ta có: \(P(x)\) chia hết cho \(x + 1 \Leftrightarrow P(-1)=0\)
\(\Leftrightarrow m.(-1)^3 + (m - 2).(-1)^2 - (3n - 5).(-1)\)
\(- 4n=0 \)
\( \Leftrightarrow -m + m - 2 + 3n - 5 - 4n = 0\)
\(\Leftrightarrow -n-7=0\)
\( \Leftrightarrow n+7=0\) (1)
+) Lại có: \(P(x)\) chia hết cho \(x - 3 \Leftrightarrow P(3)=0\)
\(\Leftrightarrow m.3^3 + (m - 2).3^2 - (3n - 5).3 - 4n=0 \)
\(\Leftrightarrow 27m + 9(m - 2) - 3(3n - 5) - 4n = 0\)
\(\Leftrightarrow 27m + 9m - 18 - 9n + 15 - 4n = 0\)
\(\Leftrightarrow 36m-13n=3\) (2)
Từ (1) và (2), ta có hệ phương trình ẩn \(m\) và \(n\).
\(\left\{\begin{matrix} n+7 = 0 & & \\ 36m - 13n = 3 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} n = -7 & & \\ 36m -13.(-7)= 3 & & \end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} n = -7 & & \\ 36m = -88 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} n = -7& & \\ m = \dfrac{-22}{9}& & \end{matrix}\right.\)
Vậy \(m=\dfrac{-22}{9},\ n=-7\).
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục