Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải bài 2.43 trang 40 Sách bài tập (SBT) Toán lớp 6 - Kết nối tri thức

Bình chọn:
4.9 trên 7 phiếu

Tìm tất cả các cặp số tự nhiên khác 0, sao cho ƯCLN của hai số đó là 8 và tích của hai số là 384.

Câu hỏi:

Tìm tất cả các cặp số tự nhiên khác 0, sao cho ƯCLN của hai số đó là 8 và tích của hai số là 384.

Phương pháp:

Hai số đó là bội của 8, ta giả sử a = 8m; b = 8n

Lời giải:

Vì ƯCLN của hai số đó là 8 nên hai số đó là bội của 8, ta giả sử a = 8m; b = 8n với ƯCLN(m, n) = 1 và do cặp số tự nhiên khác 0 nên m,n ∈ N*

Tích của hai số là 384 nên a.b = 384 hay 8m. 8n = 384

                                                                 64. m. n = 384

                                                                       m. n = 384: 64

                                                                       m. n = 6

Ta có 6 = 1. 6 = 2. 3

Do đó (m; n) ∈ {(1;6);(6;1);(2;3);(3;2)}

Ta có bảng sau:

m

1

6

2

3

n

6

1

3

2

a = 8m

8

48

16

24

b = 8n

48

8

24

16

Vậy các cặp số tự nhiên thỏa mãn đề bài là (8; 48); (48; 8); (16; 24); (24; 16).

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan