Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 26, 27, 28, 29 trang 115, 116 SGK Toán 9 tập 1 - Tính chất của hai tiếp tuyến cắt nhau

Bình chọn:
4.5 trên 15 phiếu

Giải bài 26, 27 trang 115; bài 28, 29 trang 116 sách giáo khoa Toán lớp 9 tập 1 bài Tính chất của hai tiếp tuyến cắt nhau. Bài 28 Cho góc xAy khác góc bẹt. Tâm của các đường tròn tiếp xúc với hai cạnh của góc xAy nằm trên đường nào?

Bài 26 trang 115 SGK Toán lớp 9 tập 1

Câu hỏi:

Cho đường tròn \((O)\), điểm \(A\) nằm bên ngoài đường tròn. Kẻ các tiếp tuyến \(AB,\ AC\) với đường tròn (\(B,\ C\) là các tiếp điểm).

a) Chứng minh rằng \(OA\) vuông góc với \(BC\).

b) Vẽ đường kính \(CD\). Chứng minh rằng \(BD\) song song với \(AO\).

c) Tính độ dài các cạnh của tam giác \(ABC\); biết \(OB=2cm,\ OA=4cm\).

Lời giải:

a) Vì \(AB,\ AC\) là các tiếp tuyến cắt nhau tại A nên \(AB=AC\) và \(\widehat{A_{1}}=\widehat{A_{2}}\) (tính chất hai tiếp tuyến cắt nhau)

Suy ra \(\Delta{ABC}\) cân tại \(A\). 

Vì \(\widehat{A_{1}}=\widehat{A_{2}}\) nên \(AO\) là tia phân giác của góc \(A\) nên \(AO\) đồng thời là đường cao ứng với cạnh \(BC\).

Vậy \(OA\perp BC\) 

b) Điểm \(B\) nằm trên đường tròn đường kính \(CD\) nên \(\widehat{CBD}=90^{\circ}\) (bài 3 trang 100 SGK toán 9 tập 1) hay \(BC \bot BD\).

Lại có \(AO \bot BC\)

Suy ra \(BD // AO\) (vì cùng vuông góc với \(BC)\).

c) Nối \(OB\) thì \(OB \perp AB.\)

Xét tam giác \(AOB\) vuông tại \(B\), ta có: 

\(\sin \widehat {{A_1}} = \dfrac{OB}{OA}=\dfrac{2}{4}=\dfrac{1}{2}\)

\(\Rightarrow \widehat{A_{1}}=30^{\circ}\)\(\Rightarrow \widehat{BAC}=2.\widehat {A_1}=60^{\circ}.\)

Tam giác \(ABC\) cân, có một góc \(60^{\circ}\) nên là tam giác đều.

Suy ra \(AB=BC=CA\)

Xét tam giác \(AOB\) vuông tại \(B\), áp dụng định lí Pytago, ta có: 

\(AO^{2}=AB^{2}+OB^{2} \Rightarrow AB^2=AO^2-OB^2\)

\(\Leftrightarrow AB^2=4^{2}-2^{2}=16-4=12 \Rightarrow AB=2\sqrt{3.}\)

Vậy \(AB=AC=BC=2\sqrt{3}cm\).

Nhận xét. Qua câu c) ta thấy: Góc tạo bởi hai tiếp tuyến của một đường tròn vẽ từ một điểm cách tâm một khoảng bằng đường kính đúng bằng \(60^{\circ}\).

Cách khác câu b:

Gọi H là giao điểm của OA và BC.  

Vì \(OA \bot BC\) tại H mà OA là 1 phần đường kính và BC là dây của đường tròn (O) nên H là trung điểm của BC (định lý)

Lại có O là trung điểm của đường kính CD nên OH là đường trung bình của tam giác BCD

Hay OH//BD. Do đó, OA//BD.

Bài 27 trang 115 SGK Toán lớp 9 tập 1

Câu hỏi:

Từ một điểm \(A\) nằm bên ngoài đường tròn \((O)\), kẻ các tiếp tuyến \(AB,\ AC\) với đường tròn (\(B,\ C\) là các tiếp điểm). Qua điểm \(M\) thuộc cung nhỏ \(BC\), kẻ tiếp tuyến với đường tròn \(O\), nó cắt các tiếp tuyến \(AB\) và \(AC\) theo thứ tự ở \(D\) và \(E\). Chứng minh rằng chu vi tam giác \(ADE\) bằng \(2AB\). 

Lời giải:

Vì \(AB,\ AC\) là hai tiếp tuyến của \((O)\) lần lượt tại \(B,\ C\). Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \(AB=AC\)

Vì \(DB,\ DM\) là hai tiếp tuyến của \((O)\) lần lượt tại \(B,\ M\). Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \(DB=DM\)

Vì \(EM,\ EC\) là hai tiếp tuyến của \((O)\) lần lượt tại \(M,\ C\). Theo tính chất của hai tiếp tuyến cắt nhau, ta có: \(EM=EC\)

Chu vi tam giác \(ADE\) là: \(AD+DE+EA=AD+(DM+ME)+EA\) 

\(=(AD+DM)+(ME+EA)\)

\(=(AD+DB)+(EC+EA)\) (vì \(DM=DB\) và \(ME=EC\))

\(=AB+AC=2AB\) (vì \(AC=AB\)).

Bài 28 trang 116 SGK Toán lớp 9 tập 1

Câu hỏi:

Cho góc xAy khác góc bẹt. Tâm của các đường tròn tiếp xúc với hai cạnh của góc xAy nằm trên đường nào?

Phương pháp: 

Sử dụng tính chất của hai tiếp tuyến cắt nhau: Cho \((O;R)\) với hai tiếp tuyến \(AB,\ AC\). Khi đó:  \(AO\) là phân giác của góc \(BAC\)

Lời giải:

 

Gọi \(O\) là tâm của một đường tròn bất kì tiếp xúc với hai cạnh góc \(xAy\). Khi đó \(Ax,\ Ay\) là hai tiếp tuyến của đường tròn \((O)\). Theo tính chất của hai tiếp tuyến cắt nhau ta có:

\(\widehat {xAO} = \widehat {y{\rm{A}}O}\) 

Hay \(AO\) là tia phân giác của góc \(xAy\). Vậy tập hợp tâm các đường tròn tiếp xúc với hai cạnh của góc \(xAy\) nằm trên tia phân giác của góc \(\widehat{xAy}\).

Bài 29 trang 116 SGK Toán lớp 9 tập 1

Câu hỏi:

Cho góc \(xAy\) khác góc bẹt, điểm \(B\) thuộc \(Ax\). Hãy dựng đường tròn \((O)\) tiếp xúc với \(Ax\) tại \(B\) và tiếp xúc với \(Ay\).

Lời giải:

Phân tích: Giả sử đã dựng được hình thỏa mãn đề bài. Khi đó:

Đường tròn \((O)\) tiếp xúc với hai cạnh của góc \(xAy\) nên tâm \(O\) nằm trên tia phân giác \(Am\) của góc \(xAy\) (xem lại bài 28 trang 116 SGK toán 9 tập 1).

Đường tròn \((O)\) tiếp xúc với \(Ax\) tại \(B\) nên tâm \(O\) nằm trên đường thẳng \(d\perp Ax\) tại \(B\). 

Vậy \(O\) là giao điểm của tia \(Am\) với đường thẳng \(d\).

Cách dựng

- Dựng tia phân giác Am của góc \(xAy\).

- Qua \(B\) dựng đường thẳng \(d\perp Ax\), cắt tia \(Am\) tại \(O\).

- Dựng đường tròn \((O;OB)\), đó là đường tròn phải dựng.

Chứng minh

Vì \(OB\perp Ax\) tại \(B\) nên đường tròn \((O;OB)\) tiếp xúc với \(Ax\) tại \(B\). 

Vì \(O\) nằm trên tia phân giác của góc \(xAy\) nên \(O\) cách đều hai cạnh của góc \(xAy\). Do đó đường tròn \((O;OB)\) tiếp xúc với \(Ay\).

Biện luận. Bài toán luôn có một nghiệm hình. 

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan