Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 37, 38, 39, 40 trang 56, 57 SGK Toán 9 tập 2 - Luyện tập

Bình chọn:
4.9 trên 7 phiếu

Giải bài 37, 38 trang 56; bài 39, 40 trang 57 sách giáo khoa (SGK) Toán lớp 9 tập 2 bài Luyện tập Phương trình quy về phương trình bậc hai. Bài 39 Giải phương trình bằng cách đưa về phương trình tích

Bài 37 trang 56 SGK Toán lớp 9 tập 2

Câu hỏi:

 Giải phương trình trùng phương: 

a) \(9{x^4} - 10{x^2} + 1 = 0\)

b) \(5{x^4} + 2{x^2}{\rm{  - }}16 = 10{\rm{  - }}{x^2}\)

c) \(0,3{x^4} + 1,8{x^2} + 1,5 = 0\)

d) \(\displaystyle 2{x^2} + 1 = {\rm{ }}{1 \over {{x^2}}} - 4\)

Lời giải:

a) 

\(9{x^4} - 10{x^2} + 1 = 0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \(9{t^2}-{\rm{ }}10t{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\). 

Vì \(a + b + c = 9 – 10 + 1 = 0\) nên \(\displaystyle {t_1} = 1,{t_2} = {1 \over 9}\) (thỏa mãn) 

+ Với t = 1\(⇒ x^2 = 1 ⇒ x = 1\) hoặc \(x = -1.\)  

+ Với \(t = \dfrac{1}{9} \Rightarrow {x^2} = \dfrac{1}{9} \Leftrightarrow x =  \pm \dfrac{1}{3}\)

Vậy các nghiệm của phương trình đã cho là: \(\displaystyle {x_1} =  - 1,{x_2} = 1,{x_3} =  - {1 \over 3},{x_4} = {\rm{ }}{1 \over 3}\) 

b) 

\(5{x^4} + 2{x^2}{\rm{  - }}16 = 10{\rm{  - }}{x^2}\)

\( \Leftrightarrow {\rm{ }}5{x^4} + {\rm{ }}3{x^2}-{\rm{ }}26{\rm{ }} = {\rm{ }}0\).

Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có: \(5{t^2} + {\rm{ }}3t{\rm{ }} - 26{\rm{ }} = {\rm{ }}0\) 

\(\Delta {\rm{ }} = {\rm{ }}9{\rm{ }} + {\rm{ }}4{\rm{ }}.{\rm{ }}5{\rm{ }}.{\rm{ }}26{\rm{ }} = {\rm{ }}529{\rm{ }} = {\rm{ }}{23^2}\);

\({\rm{ }}{t_1} = {\rm{ }}2,{\rm{ }}{t_2} = {\rm{ }} - 2,6\) (loại).

Do đó: \(x^2=2\) suy ra \({x_1} = {\rm{ }}\sqrt 2 ,{\rm{ }}{x_2} = {\rm{ }} - \sqrt 2 \) 

c)

\(0,3{x^4} + 1,8{x^2} + 1,5 = 0\)  

\( \Leftrightarrow {\rm{ }}{x^4} + {\rm{ }}6{x^2} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)

 Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có:

\({t^2} + {\rm{ }}6t{\rm{ }} + {\rm{ }}5{\rm{ }} = {\rm{ }}0\)

Phương trình này có \(a-b+c=1-6+5=0\) nên có hai nghiệm:

\({\rm{ }}{t_1} = {\rm{ }} - 1\) (loại), \({\rm{ }}{t_2} = {\rm{ }} - 5\) (loại).

Vậy phương trình đã cho vô nghiệm.   

Chú ý:  Cũng có thể nhận xét rằng vế trái \({x^4} + {\rm{ }}6{x^2} + {\rm{ }}5{\rm{ }} \ge {\rm{ }}5\), còn vế phải bằng 0. Vậy phương trình vô nghiệm.

d) 

\(\displaystyle 2{x^2} + 1 = {\rm{ }}{1 \over {{x^2}}} - 4\) \( \displaystyle \Leftrightarrow 2{x^2} + 5 - {\rm{ }}{1 \over {{x^2}}} = 0\).

Điều kiện \(x ≠ 0\)

\(2{x^4} + {\rm{ }}5{x^2}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\). Đặt \(t{\rm{ }} = {\rm{ }}{x^2} \ge {\rm{ }}0\), ta có:

\(2{t^2} + 5t{\rm{  - }}1 = 0;\Delta  = 25 + 8 = 33\), 

\(\displaystyle {t_1} = {\rm{ }}{{ - 5 + \sqrt {33} } \over 4}(tm),{t_2} = {\rm{ }}{{ - 5 - \sqrt {33} } \over 4}\) (loại)

Do đó \(\displaystyle  x^2= {\rm{ }}{{ - 5 + \sqrt {33} } \over 4}\) suy ra \(\displaystyle {x_1} = {\rm{ }}{{\sqrt { - 5 + \sqrt {33} } } \over 2},{x_2} = {\rm{ }} - {{\sqrt { - 5 + \sqrt {33} } } \over 2}\) 

Bài 38 trang 56 SGK Toán lớp 9 tập 2

Câu hỏi:

 Giải các phương trình:

a) \({\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} + {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x\)

b) \({x^3} + {\rm{ }}2{x^2}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}1} \right)({x^2}-{\rm{ }}2)\)

c) \({\left( {x{\rm{ }}-{\rm{ }}1} \right)^3} + {\rm{ }}0,5{x^2} = {\rm{ }}x({x^2} + {\rm{ }}1,5)\)

d) \(\dfrac{x(x - 7)}{3} – 1\) = \(\dfrac{x}{2}\) - \(\dfrac{x-4}{3}\)

e) \(\dfrac{14}{x^{2}-9}\) = \(1 - \dfrac{1}{3-x}\)

f) \(\dfrac{2x}{x+1}\) = \(\dfrac{x^{2}-x+8}{(x+1)(x-4)}\)

Lời giải: 

a) 

\({\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} + {\rm{ }}{\left( {x{\rm{ }} + {\rm{ }}4} \right)^2} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x\)

\( \Leftrightarrow {\rm{ }}{x^2}-{\rm{ }}6x{\rm{ }} + {\rm{ }}9{\rm{ }} + {\rm{ }}{x^2} + {\rm{ }}8x{\rm{ }} + {\rm{ }}16{\rm{ }} = {\rm{ }}23{\rm{ }}-{\rm{ }}3x\)

\( \Leftrightarrow {\rm{ }}2{x^2} + {\rm{ }}5x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\)

\(\Delta  = 25{\rm{  - }}16 = 9>0\)

Khi đó phương trình có 2 nghiệm phân biệt là: \({x_1} = \dfrac{{ - 5 - 3}}{{2.2}} =  - 2;{x_2} = \dfrac{{ - 5 + 3}}{{2.2}} =  - \dfrac{1}{2}\)

Vậy phương trình đã cho có 2 nghiệm phân biệt.

b) 

\({x^3} + {\rm{ }}2{x^2}-{\rm{ }}{\left( {x{\rm{ }}-{\rm{ }}3} \right)^2} = {\rm{ }}\left( {x{\rm{ }}-{\rm{ }}1} \right)({x^2}-{\rm{ }}2)\)

\(\Leftrightarrow {\rm{ }}{x^3} + {\rm{ }}2{x^2}-{\rm{ }}{x^2} + {\rm{ }}6x{\rm{ }}-{\rm{ }}9{\rm{ }} = {\rm{ }}{x^3}-{\rm{ }}{x^2}-{\rm{ }}2x{\rm{ }} + {\rm{ }}2\)

\({\rm{ }} \Leftrightarrow {\rm{ }}2{x^2} + {\rm{ }}8x{\rm{ }}-{\rm{ }}11{\rm{ }} = {\rm{ }}0\)

\(\displaystyle \Delta'  = 16 + 22 = 38,{x_1} = {\rm{ }}{{ - 4 + \sqrt {38} } \over 2},{x_2} = {{ - 4 - \sqrt {38} } \over 2}\)

Vậy phương trình đã cho có 2 nghiệm phân biệt.

c) 

\({\left( {x{\rm{ }}-{\rm{ }}1} \right)^3} + {\rm{ }}0,5{x^2} = {\rm{ }}x({x^2} + {\rm{ }}1,5)\)

\( \Leftrightarrow {\rm{ }}{x^3}-{\rm{ }}3{x^2} + {\rm{ }}3x{\rm{ }}-{\rm{ }}1{\rm{ }} + {\rm{ }}0,5{x^2} = {\rm{ }}{x^3} + {\rm{ }}1,5x\)

\(\Leftrightarrow {\rm{ }}2,5{x^2}-{\rm{ }}1,5x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0 \Leftrightarrow {\rm{ }}5{x^2}-{\rm{ }}3x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\);

\({\rm{ }}\Delta {\rm{ }} = {\rm{ }}9{\rm{ }}-{\rm{ }}40{\rm{ }} = {\rm{ }} - 31{\rm{ }} < {\rm{ }}0\)

Phương trình vô nghiệm

d) 

\(\dfrac{x(x - 7)}{3}– 1=\dfrac{x}{2}-\dfrac{x-4}{3}\)

\( \Leftrightarrow {\rm{ }}2x\left( {x{\rm{ }}-{\rm{ }}7} \right){\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}3x{\rm{ }}-{\rm{ }}2\left( {x{\rm{ }}-{\rm{ }}4} \right)\)

\(\Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}14x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}3x{\rm{ }}-{\rm{ }}2x{\rm{ }} + {\rm{ }}8\)

\(\Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}15x{\rm{ }}-{\rm{ }}14{\rm{ }} = {\rm{ }}0;\)

\(\Delta {\rm{ }} = {\rm{ }}225{\rm{ }} + {\rm{ }}112{\rm{ }} = {\rm{ }}337>0\)

\(\displaystyle {x_1} = {{15 + \sqrt {337} } \over 4},{x_2} = {\rm{ }}{{15 - \sqrt {337} } \over 4}\)

Vậy phương trình đã cho có 2 nghiệm phân biệt.

e) 

\(\dfrac{14}{x^{2}-9}=1-\dfrac{1}{3-x}\). Điều kiện: \(x{\rm{ }} \ne {\rm{ }} \pm 3\)

Khi đó

\(\begin{array}{l}\dfrac{{14}}{{{x^2} - 9}} = 1 - \dfrac{1}{{3 - x}}\\ \Leftrightarrow \dfrac{{14}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} = \dfrac{{{x^2} - 9}}{{\left( {x - 3} \right)\left( {x + 3} \right)}} + \dfrac{{x + 3}}{{\left( {x - 3} \right)\left( {x + 3} \right)}}\end{array}\)

\(\begin{array}{l} \Rightarrow 14 = {x^2} - 9 + x + 3\\ \Leftrightarrow {x^2} + x - 20 = 0\end{array}\)

\({\rm{ }}\Delta {\rm{ }} = {\rm{ }}1{\rm{ }} + {\rm{ }}4{\rm{ }}.{\rm{ }}20{\rm{ }} = {\rm{ }}81>0\)

Nên \(\displaystyle {x_1} = {{ - 1 - 9} \over 2} =  - 5;{x_2} = {{ - 1 + 9} \over 2} = 4\) (thỏa mãn)

Vậy phương trình có hai nghiệm \({x_1} = {\rm{ }} - 5,{\rm{ }}{x_2} = {\rm{ }}4\).

f) 

\(\dfrac{2x}{x+1}\) = \(\dfrac{x^{2}-x+8}{(x+1)(x-4)}\). Điều kiện: \(x ≠ -1, x ≠ 4\)

Qui đồng và khử mẫu ta được:  

\(2x\left( {x{\rm{ }}-{\rm{ }}4} \right){\rm{ }} = {\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}8\)

\( \Leftrightarrow {\rm{ }}2{x^2}-{\rm{ }}8x{\rm{ }}-{\rm{ }}{x^2} + {\rm{ }}x{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}0\)

\(\Leftrightarrow {\rm{ }}{x^2}-{\rm{ }}7x{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}0\)

Có \(a – b + c = 1 – (-7) – 8 = 0\) nên \({x_1} = - 1,{x_2} = 8\)

Vì \({x_1} = - 1\) không thỏa mãn điều kiện của ẩn nên: phương trình có một nghiệm là \(x = 8\). 

Bài 39 trang 57 SGK Toán lớp 9 tập 2

Câu hỏi:

Giải phương trình bằng cách đưa về phương trình tích.

a) \((3{x^{2}} - {\rm{ }}7x{\rm{ }}-{\rm{ }}10)[2{x^2} + {\rm{ }}\left( {1{\rm{ }} - {\rm{ }}\sqrt 5 } \right)x{\rm{ }} + {\rm{ }}\sqrt 5 {\rm{ }}-{\rm{ }}3]{\rm{ }} = {\rm{ }}0\)

b) \({x^3} + {\rm{ }}3{x^2}-{\rm{ }}2x{\rm{ }}-{\rm{ }}6{\rm{ }} = {\rm{ }}0\)

c) \(({x^{2}} - {\rm{ }}1)\left( {0,6x{\rm{ }} + {\rm{ }}1} \right){\rm{ }} = {\rm{ }}0,6{x^2} + {\rm{ }}x\)

d) \({({x^2} + {\rm{ }}2x{\rm{ }}-{\rm{ }}5)^2} = {\rm{ }}{({\rm{ }}{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}5)^2}\)

Lời giải: 

a) \(\left( {3{x^2} - 7x - 10} \right)\left[ {2{x^2} + \left( {1 - \sqrt 5 } \right)x + \sqrt 5  - 3} \right] = 0\)

\( \Leftrightarrow \left[ \begin{array}{l}3{x^2} - 7x - 10 = 0\,\left( 1 \right)\\2{x^2} + \left( {1 - \sqrt 5 } \right)x + \sqrt 5  - 3 = 0\left( 2 \right)\end{array} \right.\)

+ Giải phương trình (1).

Ta có \(a - b + c = 3 - \left( { - 7} \right) + \left( { - 10} \right) = 0\) nên phương trình (1) có hai nghiệm phân biệt \(x =  - 1;x = \dfrac{10}{3}\)

+ Giải phương trình (2)

Ta thấy \(a + b + c = 2 + 1 - \sqrt 5  + \sqrt 5  - 3 = 0\) nên phương trình (2) có hai nghiệm phân biệt \(x = 1;x = \dfrac{{\sqrt 5  - 3}}{2}\)

Vậy phương trình đã cho có bốn nghiệm \(x =  - 1;x = \dfrac{10}{3};x = 1;x = \dfrac{{\sqrt 5  - 3}}{2}.\)

b) 

\(\begin{array}{l}{x^3} + 3{x^2} - 2x - 6 = 0\\ \Leftrightarrow {x^2}\left( {x + 3} \right) - 2\left( {x + 3} \right) = 0\\ \Leftrightarrow \left( {{x^2} - 2} \right)\left( {x + 3} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 2 = 0\\x + 3 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} = 2\\x =  - 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \sqrt 2 \\x =  - \sqrt 2 \\x =  - 3\end{array} \right.\end{array}\)

Vậy phương trình đã cho có ba nghiệm \(x = \sqrt 2 ;x =  - \sqrt 2 ;x =  - 3\) 

c) 

 \(\begin{array}{l}\left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) = 0,6{x^2} + x\\ \Leftrightarrow \left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) = x\left( {0,6x + 1} \right)\\ \Leftrightarrow \left( {{x^2} - 1} \right)\left( {0,6x + 1} \right) - x\left( {0,6x + 1} \right) = 0\\ \Leftrightarrow \left( {0,6x + 1} \right)\left( {{x^2} - x - 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}0,6x + 1 = 0\\{x^2} - x - 1 = 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ - 5}}{3}\\{x^2} - x - 1 = 0\left( * \right)\end{array} \right.\end{array}\)

Phương trình (*) có \(\Delta  = {\left( { - 1} \right)^2} - 4.1\left( { - 1} \right) = 5 > 0\) nên có hai nghiệm \(\left[ \begin{array}{l}x = \dfrac{{1 + \sqrt 5 }}{2}\\x = \dfrac{{1 - \sqrt 5 }}{2}\end{array} \right.\)

Vậy phương trình đã cho có ba nghiệm phân biệt \(x =  - \dfrac{5}{3};x = \dfrac{{1 + \sqrt 5 }}{2};x = \dfrac{{1 - \sqrt 5 }}{2}\)

d) 

\(\begin{array}{l}{\left( {{x^2} + 2x - 5} \right)^2} = {\left( {{x^2} - x + 5} \right)^2}\\ \Leftrightarrow {\left( {{x^2} + 2x - 5} \right)^2} - {\left( {{x^2} - x + 5} \right)^2} = 0\\ \Leftrightarrow \left( {{x^2} + 2x - 5 + {x^2} - x + 5} \right)\left( {{x^2} + 2x - 5 - {x^2} + x - 5} \right) = 0\\ \Leftrightarrow \left( {2{x^2} + x} \right)\left( {3x - 10} \right) = 0\\ \Leftrightarrow x\left( {2x + 1} \right)\left( {3x - 10} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\2x + 1 = 0\\3x - 10 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - \dfrac{1}{2}\\x = \dfrac{{10}}{3}\end{array} \right.\end{array}\)

Vậy phương trình có ba nghiệm \(x = 0;x =  - \dfrac{1}{2};x = \dfrac{{10}}{3}\) 

Bài 40 trang 57 SGK Toán lớp 9 tập 2

Câu hỏi:

Giải phương trình bằng cách đặt ẩn phụ

a) \(3{({x^2} + {\rm{ }}x)^2}-{\rm{ }}2({x^2} + {\rm{ }}x){\rm{ }}-{\rm{ }}1{\rm{ }} = {\rm{ }}0\) 

b) \({({x^2}-{\rm{ }}4x{\rm{ }} + {\rm{ }}2)^2} + {\rm{ }}{x^2}-{\rm{ }}4x{\rm{ }}-{\rm{ }}4{\rm{ }} = {\rm{ }}0\)

c) \(x - \sqrt{x} = 5\sqrt{x} + 7\) 

d) \(\dfrac{x}{x+ 1} – 10 . \dfrac{x+1}{x}= 3\)

Lời giải: 

a) 

Đặt \({x^2} + x = t\) ta được phương trình \(3{t^2} - 2t - 1 = 0\)

Phương trình này có \(a + b + c = 3 + \left( { - 2} \right) + \left( { - 1} \right) = 0\) nên có hai nghiệm \(t = 1;t =  - \dfrac{1}{3}\)

+ Với \({t_1} = 1\) ta có \({x^2} + x = 1\) hay \({x^2} + x - 1 = 0\) có \(\Delta  = {1^2} + 4.1.1 = 5 > 0\) nên phương trình có hai nghiệm \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}\)

+ Với \(t =  - \dfrac{1}{3} \Rightarrow {x^2} + x =  - \dfrac{1}{3}\)\( \Leftrightarrow 3{x^2} + 3x + 1 = 0\) có \(\Delta  = {3^2} - 4.3.1 =  - 3 < 0\) nên phương trình vô nghiệm.

Vậy phương trình đã cho có hai nghiệm \({x_1} = \dfrac{{ - 1 + \sqrt 5 }}{2};{x_2} = \dfrac{{ - 1 - \sqrt 5 }}{2}.\)

b) 

Ta có

\(\begin{array}{l}{\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x - 4 = 0\\ \Leftrightarrow {\left( {{x^2} - 4x + 2} \right)^2} + {x^2} - 4x + 2 - 6 = 0\end{array}\)

Đặt \(t = {x^2} - 4x + 2\) ta được phương trình \({t^2} + t - 6 = 0\) có \(\Delta  = {1^2} - 4.1.\left( { - 6} \right) = 25 > 0 \)\(\Rightarrow \sqrt \Delta   = 5\) nên có hai nghiệm \(\left[ \begin{array}{l}t = \dfrac{{ - 1 + 5}}{2} = 2\\t = \dfrac{{ - 1 - 5}}{2} =  - 3\end{array} \right.\)

+ Với \(t = 2 \Rightarrow {x^2} - 4x + 2 = 2 \)\(\Leftrightarrow {x^2} - 4x = 0 \)\(\Leftrightarrow x\left( {x - 4} \right) = 0\)\( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x - 4 = 0\end{array} \right. \)\(\Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\) 

+ Với \(t =  - 3 \Leftrightarrow {x^2} - 4x + 2 =  - 3\)\( \Leftrightarrow {x^2} - 4x + 5 = 0\) có \(\Delta  = {\left( { - 4} \right)^2} - 4.1.5 =  - 4 < 0\) nên phương trình này vô nghiệm.

Vậy phương trình đã cho có nghiệm \(x = 0;x = 4.\)

c) 

\(x - \sqrt x  = 5\sqrt x  + 7 \)\(\Leftrightarrow x - 6\sqrt x  - 7 = 0\)

ĐK: \(x \ge 0\) 

Đặt \(\sqrt x  = t\,\left( {t \ge 0} \right)\) ta được phương trình \({t^2} - 6t - 7 = 0\) có \(a - b + c = 1 - \left( { - 6} \right) + \left( { - 7} \right) = 0\)  nên có hai nghiệm \(\left[ \begin{array}{l}t =  - 1\left( L \right)\\t = 7\left( N \right)\end{array} \right.\)

Với \(t = 7 \Rightarrow \sqrt x  = 7 \Leftrightarrow x = 49\,\left( {TM} \right)\)

Vậy phương trình có nghiệm \(x = 49.\)

d) 

ĐK:\(x \ne \left\{ { - 1;0} \right\}\) 

Đặt \(\dfrac{x}{{x + 1}} = t \Rightarrow \dfrac{{x + 1}}{x} = \dfrac{1}{t}\) , ta có phương trình \(t - 10.\dfrac{1}{t} = 3 \Rightarrow {t^2} - 3t - 10 = 0\)

Phương trình trên có \(\Delta  = {\left( { - 3} \right)^2} - 4.1.\left( { - 10} \right) = 49 > 0 \Rightarrow \sqrt \Delta   = 7\)  nên có hai nghiệm \(\left[ \begin{array}{l}t = \dfrac{{3 + 7}}{2} = 5\\t = \dfrac{{3 - 7}}{2} =  - 2\end{array} \right.\)

+ Với \(t = 5 \Rightarrow \dfrac{x}{{x + 1}} = 5 \\\Rightarrow 5x + 5 = x \Leftrightarrow x =  - \dfrac{5}{4}\left( {TM} \right)\)

+ Với \(t =  - 2 \Rightarrow \dfrac{x}{{x + 1}} =  - 2\\ \Rightarrow x =  - 2x - 2 \Leftrightarrow x =  - \dfrac{2}{3}\left( {TM} \right)\) 

Vậy phương trình có hai nghiệm \(x =  - \dfrac{5}{4};x =  - \dfrac{2}{3}.\) 

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan