Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 60, 61, 62, 63, 64, 65, 66 trang 64 SGK Toán 9 tập 2 - Ôn tập chương IV

Bình chọn:
4.9 trên 7 phiếu

Giải bài 60, 61, 62, 63, 64, 65, 66 trang 64 sách giáo khoa (SGK) Toán lớp 9 tập 2 bài Ôn tập chương IV - Hàm số y = ax^2 (a ≠ 0). Phương trình bậc hai một ẩn. Bài 65 Một xe lửa đi từ Hà Nội vào Bình Sơn (Quảng Ngãi).

Bài 60 trang 64 SGK Toán lớp 9 tập 2

Câu hỏi:

Với mỗi phương trình sau, đã biết một nghiệm (ghi kèm theo), hãy tìm nghiệm kia:

a) \(\displaystyle 12{{\rm{x}}^2} - 8{\rm{x}} + 1 = 0;{x_1} = {1 \over 2}\) 

b) \(2{{\rm{x}}^2} - 7{\rm{x}} - 39 = 0;{x_1} =  - 3\) 

c) \({x^2} + x - 2 + \sqrt 2  = 0;{x_1} =  - \sqrt 2 \)

d) \({x^2} - 2m{\rm{x}} + m - 1 = 0;{x_1} = 2\) 

Lời giải:

a) 

\(\displaystyle 12{{\rm{x}}^2} - 8{\rm{x}} + 1 = 0;{x_1} = {1 \over 2}\)               

Ta có: \(\displaystyle {x_1}{x_2} = {1 \over {12}} \Leftrightarrow {1 \over 2}{x_2} = {1 \over {12}} \Leftrightarrow {x_2} = {1 \over 6}\)

b) 

\(2{{\rm{x}}^2} - 7{\rm{x}} - 39 = 0;{x_1} =  - 3\) 

Ta có: \(\displaystyle {x_1}.{x_2} = {{ - 39} \over 2} \Leftrightarrow  - 3{{\rm{x}}_2} = {{ - 39} \over 2}\\ \Leftrightarrow \displaystyle {x_2} = {{13} \over 2}\)

c) 

\({x^2} + x - 2 + \sqrt 2  = 0;{x_1} =  - \sqrt 2 \)

Ta có:  

\(\eqalign{
& {x_1}.{x_2} = \sqrt 2 - 2 \cr 
& \Leftrightarrow - \sqrt 2 .{x_2} = \sqrt 2 - 2 \cr 
& \Leftrightarrow {x_2} = {{\sqrt 2 - 2} \over { - \sqrt 2 }} = {{\sqrt 2 \left( {1 - \sqrt 2 } \right)} \over { - \sqrt 2 }} = \sqrt 2 - 1 \cr} \)

d) 

\({x^2} - 2m{\rm{x}} + m - 1 = 0\, \, (1);{x_1} = 2\)

Vì \({x_1} = 2\) là một nghiệm của pt (1) nên

\(2^2- 2m.2 + m - 1 = 0\)

\(⇔ m = 1\)

Khi \(m = 1\) ta có: \({x_1}{x_2} = m - 1\) (hệ thức Vi-ét)

\(⇔ 2.{x_2}= 0\) (vì \({x_1} = 2\) và \(m = 1\))

\(⇔ {x_2}= 0\)

Bài 61 trang 64 SGK Toán lớp 9 tập 2

Câu hỏi:

Tìm hai số u và v trong mỗi trường hợp sau:

a) \(u + v = 12\); \(uv = 28\) và \(u > v\)

b) \(u + v = 3; uv = 6\)

Lời giải:

a) 

\(u + v = 12; uv = 28\) và \(u > v\)      

Ta có:    \({12^2} - 4.28 = 32 > 0\)

Nên \(u\) và \(v\) là hai nghiệm của phương trình:

\(x^2 – 12x + 28 = 0\)

\(\Delta'= 36 – 28 = 8\)

\( \Rightarrow {x_1} = 6 + 2\sqrt 2 ;{x_2} = 6 - 2\sqrt 2 \)

Vì \(6 + 2\sqrt 2  > 6 - 2\sqrt 2\) nên suy ra \(u = 6 + 2\sqrt 2 ;v = 6 - 2\sqrt 2\)

b) 

\(u + v = 3; uv = 6\)

Ta có: \({3^2} - 4.6 =  - 15 < 0\)

Nên \(u\) và \(v\) không có giá trị nào thỏa mãn đầu bài.

Bài 62 trang 64 SGK Toán lớp 9 tập 2

Câu hỏi:

Cho phương trình \(7x^2 + 2(m – 1)x – m^2= 0\)

a) Với giá trị nào của \(m\) thì phương trình có nghiệm?

b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-ét, hãy tính tổng các bình phương hai nghiệm của phương trình theo \(m\).

Phương pháp: 

Phương trình \(a{x^2} + bx + c = 0\,\left( {a \ne 0} \right)\) có nghiệm khi và chỉ khi \(\Delta \ge 0\) (hoặc \(\Delta ' \ge 0)\)

Lời giải: 

a) 

Xét phương trình \(7x^2 + 2(m – 1)x – m^2 = 0\) (1) có \(a=7\ne 0\)

Phương trình (1) có nghiệm khi \(\Delta’ ≥ 0\)

Ta có: \(\Delta’ = (m – 1)^2 – 7(-m^2) = (m – 1)^2 + 7m^2 ≥ 0\) với mọi \(m\)

Vậy phương trình (1) luôn luôn có nghiệm với mọi giá trị của \(m\)

b) 

Xét phương trình \(7x^2 + 2(m – 1)x – m^2 = 0\) (1) có \(a=7\ne 0\)

Gọi \({x_1},{x_2}\) là hai nghiệm của phương trình (1)

Theo hệ thức Viet ta có:

\(\left\{ \begin{array}{l}
{x_1} + {x_2} =  - \dfrac{2(m-1)}{7}\\
{x_1}.{x_2} = \dfrac{- m^2}{7}
\end{array} \right.\)

Ta có:

\(\begin{array}{l} 
x_1^2 + x_2^2=x_1^2 + x_2^2+2x_1x_2-2x_1x_2 \\= {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2}\\
 = {\left[ {\dfrac{{ - 2\left( {m - 1} \right)}}{7}} \right]^2} - 2.\dfrac{{ - {m^2}}}{7}\\
 = \dfrac{{4\left( {{m^2} - 2m + 1} \right)}}{{49}} + \dfrac{{2{m^2}}}{7}\\
 = \dfrac{{4{m^2} - 8m + 4 + 14{m^2}}}{{49}}\\
 = \dfrac{{18{m^2} - 8m + 4}}{{49}}
\end{array}\)

Vậy \(\displaystyle x_1^2 + x_2^2 = {{18{m^2} - 8m + 4} \over {49}}\) .

Bài 63 trang 64 SGK Toán lớp 9 tập 2

Câu hỏi:

Sau hai năm, số dân của một thành phố tăng từ \(2 000 000\) người lên \(2 020 050\) người. Hỏi trung bình mỗi năm dân số của thành phố đó tăng bao nhiêu phần trăm?

Lời giải:

Gọi tỉ lệ tăng dân số trung bình mỗi năm là \(x\) % \((x > 0)\).

Sau một năm dân số của thành phố là:

\(\displaystyle 2 000 000 + 2 000 000 . {x \over {100}}= 2 000 000 + 20 000x\) (người)

Sau hai năm, dân số của thành phố là:

\(\displaystyle 2000000 +20 000x + (2000 000 + 20 000x). {x \over {100}}\)

\(= 2000 000 + 40 000x + 200x^2\) (người)

Ta có phương trình:

\(2 000 000 + 40 000x + 200x^2= 2 020 050\)

\(⇔ 4x^2 + 800x – 401 = 0\)

\(\Delta' = 400^2 – 4(-401) = 160 000 + 1 604\)

\(= 161 604 > 0\)

\(\sqrt\Delta'= \sqrt{161 604} = 402\)

Vậy phương trình có 2 nghiệm:

\(\displaystyle {x_1} = {{ - 400 + 402} \over 4} = 0,5(TM)\)

\(\displaystyle {x_2} = {{ - 400 - 402} \over 4} =  - 200,5 < 0\) (loại)

Tỉ lệ tăng dẫn số trung bình hàng năm của thành phố là \(0,5\) %

Bài 64 trang 64 SGK Toán lớp 9 tập 2

Câu hỏi:

 Bài toán yêu cầu tìm tích của một số dương với một số lớn hơn nó 2 đơn vị, nhưng bạn Quân nhầm đầu bài lại tính tích của một số dương với một số bé hơn nó 2 đơn vị. Kết quả của bạn Quân là 120. Hỏi nếu làm đúng đầu bài đã cho thì kết quả phải là bao nhiêu?

Lời giải:

Gọi \(x\) là số dương mà đầu bài cho, \(x >0\)

Bạn Quân đã chọn số \((x – 2)\) để nhân với \(x\).

Theo đề bài, ta có: \(x(x – 2) = 120\) hay \(x^2 – 2x – 120 = 0\) 

Phương trình trên có \(\Delta'=(-1)^2-1.(-120)=121>0\)

Suy ra \(x = 1+\sqrt {121}=12\) (thỏa mãn) hoặc \(x=1-\sqrt {121}=-10\) (loại)

Nên số đầu bài cho là \(12\)

Theo đầu bài yêu cầu tìm tích của \(x\) với \(x +2\)

Vậy kết quả đúng phải là: \(12.14 = 168\)

Bài 65 trang 64 SGK Toán lớp 9 tập 2

Câu hỏi:

Một xe lửa đi từ Hà Nội vào Bình Sơn (Quảng Ngãi). Sau đó 1 giờ, một xe lửa khác đi từ Bình Sơn ra Hà Nội với vận tốc lớn hơn vận tốc của xe lửa thứ nhất là 5km/h. Hai xe gặp nhau tại một ga ở chính giữa quãng đường. Tìm vận tốc của mỗi xe, giả thiết rằng quãng đường  Hà Nội – Bình Sơn dài 900km. 

Lời giải:

Gọi \(x\) (km/h) là vận tốc của xe lửa thứ nhất. Điều kiện \(x > 0\).

Khi đó vận tốc của xe lửa  thứ hai là \(x + 5\) (km/h).

Đến khi gặp nhau tại chính giữa quang đường thì mỗi xe đều đi được \(900:2=450\) km.

Thời gian xe lửa thứ nhất đi từ Hà Nội đến chỗ gặp nhau là: \(\displaystyle {{450} \over x}\) (giờ)

Thời gian xe lửa thứ hai đi từ Bình Sơn đến chỗ gặp nhau là: \(\displaystyle {{450} \over {x + 5}}\) (giờ)

Vì xe lửa thứ hai đi sau \(1\) giờ, nghĩa là thời gian đi đến chỗ gặp nhau ít hơn xe thứ nhất \(1\) giờ. Ta có phương trình:

\(\dfrac{{450}}{x} - \dfrac{{450}}{{x + 5}} = 1\)

\(\begin{array}{l}
 \Leftrightarrow 450\left( {x + 5} \right) - 450x = x\left( {x + 5} \right)\\
 \Leftrightarrow 450x + 2250 - 450x = {x^2} + 5x\\
 \Leftrightarrow {x^2} + 5x - 2250 = 0\\
\Delta  = {5^2} - 4.\left( { - 2250} \right) = 9025 > 0,\sqrt \Delta   = 95
\end{array}\)

Từ đó ta có: \({x_1} = 45\) (nhận); \({x_2} = -50\) (loại)

Vậy: Vận tốc của xe lửa thứ nhất là \(45\) km/h

Vận tốc của xe lửa thứ hai là \(50\) km/h.

Bài 66 trang 64 SGK Toán lớp 9 tập 2

Câu hỏi:

Cho tam giác ABC có BC = 16cm , đường cao AH = 12 cm. Một hình chữ nhật MNPQ có đỉnh M thuộc cạnh AB, đỉnh N thuộc cạnh AC còn hai đỉnh P và Q thuộc cạnh BC (h.17). Xác định vị trí của điểm M trên cạnh AB sao cho diện tích của hình chữ nhật đó bằng 36cm2.

Lời giải:

Gọi \(x\) (cm) là độ dài của đoạn \(AK\). Điều kiện \(0 < x < 12\)

Vì \(∆ABC\) đồng dạng \(∆AMN\) nên

\(\eqalign{
& {{MN} \over {BC}} = {{AM} \over {AB}} = {{AK} \over {AH}} = {x \over {12}} \cr
& \Rightarrow MN = {{16x} \over {12}} = {{4{\rm{x}}} \over 3} \cr} \)  

Ta có: \(MQ = KH = 12 – x\)

Do đó diện tich hình chữ nhật \(MNPQ\) là: \(\displaystyle \left( {12 - x} \right){{4{\rm{x}}} \over 3}\) 

Ta có phương trình:

\(\displaystyle \left( {12 - x} \right){{4{\rm{x}}} \over 3} = 36 \Leftrightarrow {x^2} - 12{\rm{x}} + 27 = 0\)

Phương tình trên có \( \Delta'=(-6)^2-1.27=9>0\)

Suy ra \({x} = 9\) (nhận) hoặc \({x} = 3\) (nhận)

Vậy độ dài của đoạn \(AK = 3cm\) hoặc \(AK=9cm\). Suy ra \( \dfrac {AM}{AB}=\dfrac {1}{4}\) hoặc \( \dfrac {AM}{AB}=\dfrac {3}{4}\)

Khi đó \(M\) sẽ có hai vị trí trên \(AB\) nhưng diện tích hình chữ nhật \(MNPQ\) luôn bằng \(36\) cm2

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan