Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách
Cho hình lập phương ABCD. A’B’C’D’. Chứng minh hai tứ diện ABCB’ và AA’D’B’ bằng nhau.
Cho khối tứ diện đều ABCD cạnh bằng a. Gọi A’, B’ , C’ , D’ lần lượt là trọng tâm của các tam giác BCD , CDA , DAB , ABC.
Cho khối hộp ABCD.A’B’C’D’ có thể tích bằng V, I là giao điểm các đường chéo của nó. Mặt phẳng (P) đi qua I và cắt các cạnh bên của khối hộp chia khối hộp đó thành hai khối đa diện. Tính thể tích của mỗi khối đa diện đó theo V.
Bài viết được xem nhiều nhất