Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải bài 1, 2, 3, 4, 5 trang 109, 110 SGK Toán 9 Cánh Diều tập 1

Bình chọn:
4.9 trên 7 phiếu

Ròng rọc là một loại máy cơ đơn giản có rãnh và có thể quay quanh một trục, được sử dụng rộng rãi trong công việc nâng lên và hạ xuống vật nặng trong cuộc sống. Trong Hình 41a, có một sợi dây không dãn vắt qua ròng rọc.

Bài 1 trang 109 SGK Toán 9 tập 1 - Cánh Diều

Ròng rọc là một loại máy cơ đơn giản có rãnh và có thể quay quanh một trục, được sử dụng rộng rãi trong công việc nâng lên và hạ xuống vật nặng trong cuộc sống. Trong Hình 41a, có một sợi dây không dãn vắt qua ròng rọc.

 

Giả sử ròng rọc được minh họa bởi đường tròn \(\left( O \right)\), sợi dây vắt qua ròng rọc được minh hoạ bởi cung \(MtN\) và hai tiếp tuyến \(Ma,Nb\) của đường tròn \(\left( O \right)\) (Hình 41b). Chứng minh \(Ma//Nb\).

Phương pháp:

Dựa vào tính chất tiếp tuyến để chứng minh.

Lời giải:

Do Ma, Nb là các tiếp tuyến của đường tròn (O) tại M nên Ma ⊥ OM tại M và Nb ⊥ ON tại N.

Mà MtN là nửa đường tròn nên MN là đường kính đi qua tâm O.

Do đó Ma ⊥ MN và Nb ⊥ MN, suy ra Ma // Nb.

Bài 2 trang 110 SGK Toán 9 tập 1 - Cánh Diều

Cho đường tròn \(\left( O \right)\) và dây \(AB\). Điểm \(M\) nằm ngoài đường tròn \(\left( O \right)\) thỏa mãn điểm \(B\) nằm trong góc \(MAO\) và \(\widehat {MAB} = \frac{1}{2}\widehat {AOB}\). Chứng minh đường thẳng \(MA\) là tiếp tuyến của đường tròn \(\left( O \right)\). 

Phương pháp:

Dựa vào tính chất tiếp tuyến để chứng minh.

Lời giải:

Kẻ OH ⊥ AB tại H và OH cắt BM tại N.

Xét ∆OAB có OA = OB (bán kính đường tròn (O)) nên ∆OAB cân tại A.

∆OAB cân tại A có đường cao OH nên OH đồng thời là đường phân giác của 

Do đó MA ⊥ OA tại A, mà OA là bán kính của đường tròn (O) nên MA là tiếp tuyến của đường tròn (O).

Bài 3 trang 110 SGK Toán 9 tập 1 - Cánh Diều

Cho đường tròn \(\left( O \right)\) và điểm \(M\) nằm ngoài đường tròn. Hai đường thẳng thẳng \(c,d\) đi qua \(M\) lần lượt tiếp xúc với \(\left( O \right)\) tại \(A,B\). Tia phân giác của góc \(MAB\) cắt \(MO\) tại \(I\). Chứng minh điểm \(I\) cách đều ba đường thẳng \(MA,MB\) và \(AB\).

Phương pháp:

Dựa vào tính chất tiếp tuyến để chứng minh.

Lời giải:

Gọi H, K và N lần lượt là hình chiếu của I lên MA, MA và AB.

Theo cách vẽ, ta có IH ⊥ MA, IK ⊥ MB, IN ⊥ AB nên

Xét ∆ANI (vuông tại N) và ∆AHI (vuông tại H) có:

AI là cạnh chung; (do AI là phân giác của )

Do đó ∆ANI = ∆AHI (cạnh huyền – góc nhọn).

Suy ra IN = IH (hai cạnh tương ứng). (1)

Vì MA, MB là hai tiếp tuyến của đường tròn (O) cắt nhau tại M với A, B là các tiếp điểm nên MO là tia phân giác của  hay MI là tia phân giác của  

Xét ∆MHI (vuông tại H) và ∆MKI (vuông tại K) có:

MI là cạnh chung  và (do MI là tia phân giác của )

Do đó ∆MHI = ∆MKI (cạnh huyền – góc nhọn).

Suy ra IH = IK (hai cạnh tương ứng). (2)

Từ (1) và (2) suy ra IN = IH = IK.

Vậy điểm I cách đều ba đường thẳng MA, MB và AB.

Bài 4 trang 110 SGK Toán 9 tập 1 - Cánh Diều

Một người quan sát đặt mắt ở vị trí \(A\) có độ cao cách mực nước biển là \(AB = 5m\). Cắt bề mặt Trái Đất bởi một mặt phẳng đi qua điểm \(A\) và tâm của Trái Đất thì phần chung giữa chúng là một đường tròn lớn tâm \(O\) như Hình 42. Tầm quan sát tối đa từ vị trí \(A\) là đoạn \(AC\), trong đó \(C\) là tiếp điểm của tiếp tuyến đi qua \(A\) với đường tròn \(\left( O \right)\). Tính độ dài đoạn thẳng \(AC\) (theo đơn vị kilômét và làm tròn kết quả đến hàng phần mười), biết bán kính Trái Đất là: \(OB = OC \approx 6400km\).

 

Phương pháp:

Dựa vào tính chất tiếp tuyến để chứng minh.

Lời giải:

Theo bài, ta có: AB = 5 m = 0,005 km.

Khi đó, OA = OB + AB ≈ 6 400 + 0,005 = 6 400,005 (km).

Vì AC là tiếp tuyến của đường tròn (O) nên AC ⊥ OC tại C, hay

Do đó ∆OAC vuông tại C.

Theo định lí Pythagore, ta có:

OA2 = OC2 + AC2

Suy ra AC2 = OA2 – OC2 ≈ 6 400,0052 – 6 4002 = 64,000025.

Do đó

 Vậy AC ≈ 8,0 km.

Bài 5 trang 110 SGK Toán 9 tập 1 - Cánh Diều

Cho đường tròn \(\left( {O;R} \right)\) đường kính \(AB\) và các đường thẳng \(m,n,p\) lần lượt tiếp xúc với đường tròn tại \(A,B,C\) (Hình 43).

 

Chứng minh:

a) \(AD + BE = DE\);

b) \(\widehat {COD} = \frac{1}{2}\widehat {COA}\) và \(\widehat {COE} = \frac{1}{2}\widehat {COB}\);

c) Tam giác \(ODE\) vuông;

d) \(\frac{{OD.OE}}{{DE}} = R\).

Dựa vào kiến thức vừa học để vẽ hình.

Phương pháp:

Dựa vào tính chất tiếp tuyến để chứng minh.

Lời giải:

a) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên DA = DC (tính chất hai tiếp tuyến cắt nhau).

Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên EB = EC (tính chất hai tiếp tuyến cắt nhau).

Do đó DA + EB = DC + EC hay AD + BE = DE.

b) Vì DA, DC là hai tiếp tuyến của đường tròn (O) cắt nhau tại D nên OA là tia phân giác của  (tính chất hai tiếp tuyến cắt nhau).

Do đó  (tính chất tia phân giác).

Vì EB, EC là hai tiếp tuyến của đường tròn (O) cắt nhau tại E nên OE tia phân giác của (tính chất hai tiếp tuyến cắt nhau).

Vậy tam giác ODE vuông tại O.

d) Vì DE là tiếp tuyến của đường tròn (O) tại C nên OC ⊥ DE tại C.

Xét ∆ODE và ∆CDO có:

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan