Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải SGK Toán 11 trang 113 Cánh Diều tập 1

Bình chọn:
4.9 trên 7 phiếu

Giải bài 1, 2, 3 trang 113 SGK Toán lớp 11 Cánh Diều tập 1. Bài 3. Cho hình lăng trụ tam giác ABC.A’B’C‘. Gọi E, F lần lượt là trung điểm của các cạnh AC và A’B‘.

Bài 1 trang 113 SGK Toán 11 tập 1 - Cánh Diều

Cho hình hộp ABCD.A’B’C’D’.

a) Chứng minh rằng (ACB’) // (A’C’D’)

b) Gọi\({G_1},{G_2}\)lần lượt là giao điểm của BD’ với các mặt phẳng (ACB’) và (A’C’D’).

Chứng minh rằng\({G_1},{G_2}\)lần lượt là trọng tâm của hai tam giác ACB’ và A’C’D.

c) Chứng minh rằng \(B{G_1} = {G_1}{G_2} = D'{G_2}\)

Phương pháp:

Nếu mặt phẳng (P) chứa hai đường thẳng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q) 

Lời giải:

 

a) Ta có: AD // B’C’, AD = B’C’ nên ADC’B’ là hình bình hành

Suy ra AB’ // DC’ nên AB‘ // (A’C’D) (1)

Ta có: (ACC’A‘) là hình bình hành nên AC // A’C‘

Suy ra AC // (A’C’D‘) (2)

Mà AB‘, AC thuộc (ACB‘) (3)

Từ (1), (2), (3) suy ra  (ACB‘) // (A‘C’D)

b) Gọi O, O’ lần lượt là tâm hình bình hành ABCDA’B’C’D’

Trong (BDD’B’): B’O cắt BD’

Mà B’O thuộc (ACB’)BD’ cắt (ACB’) tại\({G_1}\)

Suy ra: B’O cắt BD’ tại\({G_1}\)

Tương tự, ta có: DO’ cắt BD’ tại\({G_2}\)

Ta có: tam giác \({G_1}OB\) đồng dạng với tam giác \({G_1}B'D'\) (do BD // B’D’)

Suy ra\(\frac{{{G_1}O}}{{{G_1}B'}} = \frac{{OB}}{{B'D'}} = \frac{1}{2}\)

Nên \(\frac{{{G_1}O}}{{{G_1}B'}} = \frac{2}{3}\)

Do đó:\({G_1}\) là trọng tâm tam giác ACB’

Chứng minh tương tự ta có:\({G_2}\) là trọng tâm tam giác A’C’D

c) Ta có tam giác\({G_1}OB\) đồng dạng với tam giác \({G_1}B'D'\)

Suy ra\(\frac{{{G_1}O}}{{{G_1}B'}} = \frac{{OB}}{{B'D'}} = \frac{1}{2}\)

Nên \({G_1}B = \frac{1}{3}BD'(1)\)

Tương tự ta có:\(\frac{{{G_2}D'}}{{{G_2}B}} = \frac{{OD'}}{{DB}} = \frac{1}{2}\)

Nên \({G_2}D' = \frac{1}{3}{\rm{DD}}'(2)\)

Từ (1) và (2) suy ra\({G_1}B = {G_1}{G_2} = {G_2}D'\)

Bài 2 trang 113 SGK Toán 11 tập 1 - Cánh Diều

Cho hình hộp ABCD.A’B’C’D‘. Gọi M, N, P, Q lần lượt là trung điểm của các cạnh BC, AA‘, C’D‘, AD‘. Chứng minh rằng:

a) NQ // A’D‘ và \(NQ = \frac{1}{2}A'D'\)

b) Tứ giác MNQC là hình bình hành

c) MN // (ACD‘)

d) (MNP) // (ACD‘)

 

Phương pháp:

- Hình tứ giác có các cặp cạnh song song là hình bình hành

- Nếu đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng a’ nằm trong (P) thì a song song với (P)

- Nếu mặt phẳng (P) chứa hai đường thằng cắt nhau a, b và a, b cùng song song với mặt phẳng (Q) thì (P) song song với (Q) 

Lời giải:

a)

 

b)

c)

Do MNQC hình bình hành nên MN // QC

Mà QC ⊂ (ACD’) nên MN // (ACD’).

d)

Bài 3 trang 113 SGK Toán 11 tập 1 - Cánh Diều

Cho hình lăng trụ tam giác ABC.A’B’C‘. Gọi E, F lần lượt là trung điểm của các cạnh AC và A’B‘.

a) Chứng minh rằng EF // (BCC’B’)

b) Gọi I là giao điểm của đường thẳng CF với mặt phẳng (AC’B). Chứng minh rằng I là trung điểm đoạn thẳng CF.

Phương pháp:

Nếu đường thẳng a không nằm trong mặt phẳng (P) và a song song với đường thẳng a’ nằm trong (P) thì a song song với (P) 

Lời giải:

a) Gọi H là trung điểm của BC

Tam giác ABC có: E là trung điểm của AC

Suy ra EH // AB

Mà AB // A’B’

Do đó EH // A’B’ hay EH // B’F (1)

Ta có: EH // AB nên

Mà AB = A’B“,

Nên EH = B’F (2)

Từ (1) và (2) suy ra: EHB’F là hình bình hành

Suy ra EF // B’H

Suy ra EF // (BCC’B’)

b) Gọi K là trung điểm AB

Dễ dàng chứng minh FKBB’ là hình bình hành

Ta có: FK // BB‘

Mà BB‘ // CC‘

Suy ra FK // CC‘ (1)

Ta có: FK = BB‘, mà BB‘ = CC‘

Do đó: FK = CC‘ (2)

Từ (1) và (2) suy ra FKCC’ là hình bình hành

Suy ra C’K cắt CF tại trung điểm mỗi đường

Suy ra là trung điểm của CF

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan