Bài 1 trang 47 SGK Toán 11 tập 1 - Cánh Diều
Viết năm số hạng đầu của mỗi dãy số có số hạng tổng quát \({u_n}\) cho bởi công thức sau:
a) \({u_n} = 2{n^2} + 1\)
b) \({u_n} = \frac{{{{\left( { - 1} \right)}^n}}}{{2n - 1}}\)
c) \({u_n} = \frac{{{2^n}}}{n}\)
d) \({u_n} = {\left( {1 + \frac{1}{n}} \right)^n}\)
Phương pháp:
Dựa vào kiến thức đã học để xác định 5 số hạng đầu của từng dãy số
Lời giải:
a) Năm số hạng đầu của dãy số là: 3; 9; 19; 33; 51
b) Năm số hạng đầu của dãy số là: \( - 1;\frac{1}{3}; - \frac{1}{5};\frac{1}{7}; - \frac{1}{9}\)
c) Năm số hạng đầu của dãy số là: \(2;2;\frac{8}{3};4;\frac{{32}}{5}\)
d) Năm số hạng đầu của dãy số là: \(2;\frac{9}{4};\frac{{64}}{{27}};\frac{{625}}{{256}};\frac{{7776}}{{3125}}\)
Bài 2 trang 47 SGK Toán 11 tập 1 - Cánh Diều
a) Gọi \({u_n}\) là số chấm ở hàng thứ n trong Hình 1. Dự đoán công thức của số hạng tổng quát cho dãy số \(\left( {{u_n}} \right)\)
b) Gọi \({v_n}\) là tổng diện tích của các hình tô màu ở hành thứ n trong Hình 2 (Mỗi ô vuông nhỏ là một đơn vị diện tích). Dự đoán công thức của số hàng tổng quát cho dãy số \(\left( {{v_n}} \right)\)
Phương pháp:
Dựa vào kiến thức đã học để xác định
Lời giải:
a) Số chấm ở hàng thứ nhất là: u1 = 1;
Số chấm ở hàng thứ hai là: u2 = 2;
Số chấm ở hàng thứ ba là: u3 = 3;
Số chấm ở hàng thứ tư là: u4 = 4;
Vậy số chấm ở hàng thứ n là: un = n.
b) Diện tích của các ô màu ở hàng thứ nhất là: v1 = 1 = 13;
Diện tích của các ô màu ở hàng thứ hai là: v2 = 8 = 23;
Diện tích của các ô màu ở hàng thứ ba là: v3 = 27 = 33;
Diện tích của các ô màu ở hàng thứ tư là: v4 = 64 = 43;
Vậy diện tích của các ô màu ở hàng thứ n là: vn = n3.
Bài 3 trang 48 SGK Toán 11 tập 1 - Cánh Diều
Xét tính tăng, giảm của mỗi dãy số \(\left( {{u_n}} \right)\), biết:
a) \({u_n} = \frac{{n - 3}}{{n + 2}}\)
b) \({u_n} = \frac{{{3^n}}}{{{2^n}.n!}}\)
c) \({u_n} = {\left( { - 1} \right)^n}\left( {{2^n} + 1} \right)\)
Phương pháp:
Dựa vào định nghĩa tính tăng, giảm của dãy số để xác định
Lời giải:
a) Xét:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{n + 1 - 3}}{{n + 1 + 2}} - \frac{{n - 3}}{{n + 2}}\\ = \frac{{n - 2}}{{n + 3}} - \frac{{n - 3}}{{n + 2}} = \frac{{{n^2} - 4 - {n^2} + 9}}{{\left( {n + 3} \right)\left( {n + 2} \right)}}\\ = \frac{5}{{\left( {n + 3} \right)\left( {n + 2} \right)}} > 0\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
=> Dãy số là dãy số tăng
b) Xét:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{{3^{n + 1}}}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} - \frac{{{3^n}}}{{{2^n}.n!}}\\ = \frac{{{3^{n + 1}}}}{{{{2.2}^n}.n!.\left( {n + 1} \right)}} - \frac{{{3^n}}}{{{2^n}.n!}}\\ = \frac{{{3^{n + 1}}}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} - \frac{{{3^n}.2\left( {n + 1} \right)}}{{{2^{n + 1}}.\left( {n + 1} \right)!}}\\ = \frac{{{3^n}\left( {3 - 2n - 2} \right)}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} = \frac{{{3^n}\left( { - 2n + 1} \right)}}{{{2^{n + 1}}.\left( {n + 1} \right)!}} < 0\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
=> Dãy số là dãy số giảm
c) Xét:
\(\begin{array}{l}{u_{n + 1}} - {u_n} = {\left( { - 1} \right)^{n + 1}}.\left( {{2^{n + 1}} + 1} \right) - {\left( { - 1} \right)^n}.\left( {{2^n} + 1} \right)\\ = {\left( { - 1} \right)^n}\left[ {\left( { - 1} \right).\left( {{2^{n + 1}} + 1} \right) - {2^n} - 1} \right]\\ = {\left( { - 1} \right)^n}\left( { - {2^{n + 1}} - 1 - {2^n} - 1} \right)\\ = {\left( { - 1} \right)^n}\left( { - {{3.2}^n} - 2} \right)\end{array}\)
=> Dãy số không tăng không giảm
Bài 4 trang 48 SGK Toán 11 tập 1 - Cánh Diều
Trong các dãy số \(\left( {{u_n}} \right)\) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?
a) \({u_n} = {n^2} + 2\)
b) \({u_n} = - 2n + 1\)
c) \({u_n} = \frac{1}{{{n^2} + n}}\)
Phương pháp:
Dựa vào kiến thức đã học để xác định
Lời giải:
a) Ta có: n ∈ ℕ* nên n ≥ 1 suy ra n2 + 2 ≥ 3
Do đó un ≥ 3
Vậy dãy số (un) bị chặn dưới bởi 3.
b) Ta có: n ∈ ℕ* nên n ≥ 1 suy ra un = – 2n + 1 ≤ – 1
Do đó un ≤ – 1.
Vậy dãy số (un) bị chặn trên bởi – 1.
Bài 5 trang 48 SGK Toán 11 tập 1 - Cánh Diều
Cho dãy số dương \(\left( {{u_n}} \right)\). Chứng minh rằng dãy số \(\left( {{u_n}} \right)\) là dãy số tăng khi và chỉ khi \(\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\) với mọi \(n \in {\mathbb{N}^*}\).
Phương pháp:
Dựa vào kiến thức đã học để chứng minh
Lời giải:
Ta có:
\(\begin{array}{l}\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {u_{n + 1}} > {u_n}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)
=> Luôn đúng
Bài 6 trang 48 SGK Toán 11 tập 1 - Cánh Diều
Chị Mai gửi tiền tiết kiệm vào ngân hàng theo thể thức lãi kép như sau: Lần đầu chị gửi 100 triệu đồng. Sau đó, cứ hết 1 tháng chị lại gửi thêm vào ngân hàng 6 triệu đồng. Biết lãi suất của ngân hàng là 0,5% một tháng. Gọi \({P_n}\) (triệu đồng) là số tiền chị có trong ngân hàng sau n tháng
a) Tính số tiền chị có trong ngân hàng sau 1 tháng
b) Tính số tiền chị có trong ngân hàng sau 3 tháng
c) Dự đoán công thức của \({P_n}\) tính theo n
Phương pháp:
Dựa vào kiến thức vừa học về dãy số để xác định.
Lời giải:
a) Số tiền chị có trong ngân hàng sau 1 tháng là:
P1 = 100 + 100.0,5% + 6 = 100,5 + 6 (triệu đồng).
b) Số tiền chị có trong ngân hàng sau 2 tháng là:
P2 = 100,5 + 6 + (100,5 + 6).0,5% + 6= (100,5 + 6)(1 + 0,5%) + 6 = 100,5(1 + 0,5%) + 6.(1 + 0,5%) + 6 (triệu đồng)
Số tiền chị có trong ngân hàng sau 3 tháng là:
P3 = (100,5 + 6)(1 + 0,5%) + 6 + [(100,5 + 6)(1 + 0,5%) + 6 ].0,5% + 6
= 100,5.(1 + 0,5%)2 + 6(1 + 0,5%)2 + 6.(1 + 0,5%) + 6 (triệu đồng).
c) Số tiền chị có trong ngân hàng sau 4 tháng là:
P4 = (100,5 + 6)(1 + 0,5%)2 + 6.(1 + 0,5%) + 6 + [(100,5 + 6)(1 + 0,5%)2 + 6.(1 + 0,5%) + 6]0,5% + 6
= 100,5.(1 + 0,5%)3 + 6.(1 + 0,5%)3 + 6(1 + 0,5%)2 + 6.(1 + 0,5%) + 6
Số tiền chị có trong ngân hàng sau n tháng là:
Pn = 100,5.(1 + 0,5%)n-1 + 6(1 + 0,5%)n-1 + 6(1 + 0,5%)n-2 + 6.(1 + 0,5%)n-3 + ... + 6 với mọi n ∈ ℕ*.
Sachbaitap.com
Bài viết liên quan