Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải SGK Toán 8 Cánh Diều tập 2 trang 89

Bình chọn:
4.9 trên 7 phiếu

Giải bài 1, 2, 3 trang 89 SGK Toán lớp 8 Cánh Diều tập 2. Trong Hình 96, các điểm A, B, C, D lần lượt là trung điểm của các đoạn thẳng OA'', OB'', OC'', OD''. Quan sát Hình 96 và cho biết: a) Hai hình thoi A'B'C'D' và A''B''C''D'' có bằng nhau hay không? b) Hai hình thoi A'B'C'D' và ABCD có đồng dạng hay không?

Bài 1 trang 89 SGK Toán 8 - Cánh Diều tập 2

Trong Hình 96, các điểm A, B, C, D lần lượt là trung điểm của các đoạn thẳng OA'', OB'', OC'', OD''. Quan sát Hình 96 và cho biết: 

a) Hai hình thoi A'B'C'D' và A''B''C''D'' có bằng nhau hay không?

b) Hai hình thoi A'B'C'D' và ABCD có đồng dạng hay không?

 

Phương pháp:

Quan sát hình và trả lời các câu hỏi.

Lời giải:

a) Từ lưới kẻ ô vuông ở Hình 96, ta thấy hai hình thoi A’B’C’D’ và A’’B’’C’’D’’ có độ dài cạnh bằng nhau nên hai hình thoi đó bằng nhau.

Vậy hai hình thoi A’’B’’C’’D’’ và ABCD là đồng dạng phối cảnh và điểm O là tâm đồng dạng phối cảnh.

Mà hai hình thoi A’B’C’D’ và A’’B’’C’’D’’ bằng nhau nên hình thoi A’B’C’D’ đồng dạng với hình thoi ABCD.

Bài 2 trang 89 SGK Toán 8 - Cánh Diều tập 2

Cho tam giác ABC có \(AB = 3,{\rm{ }}BC = 6,{\rm{ }}CA = 5\). Cho O, I là hai điểm phân biệt. 

a) Giả sử tam giác A'B'C' là hình đồng dạng phối cảnh của tam giác ABC với điểm O là tâm đồng dạng phối cảnh, tỉ số \(\frac{{A'B'}}{{AB}} = 3\). Hãy tìm độ dài các cạnh của tam giác A'B'C'.

b) Giả sử tam giác A''B''C'' là hình đồng dạng phối cảnh của tam giác ABC với điểm I là tâm đồng dạng phối cảnh, tỉ số \(\frac{{A''B''}}{{AB}} = 3\). Hãy tìm độ dài các cạnh của tam giác A''B''C''.

c) Chứng minh \(\Delta A'B'C' = \Delta A''B''C''\)

Chú ý: Hai tam giác cùng là hình đồng dạng phối cảnh tỉ số k (tâm đồng dạng phối cảnh có thể khác nhau) của một tam giác luôn bằng nhau

Phương pháp:

Theo đề bài, suy ra các cặp tam giác đồng dạng từ đó suy ra tỉ số đồng dạng rồi tính độ dài các cạnh của tam giác.

Lời giải:

a) Tam giác A’B’C’ là hình đồng dạng phối cảnh của tam giác ABC với điểm O là tâm đồng dạng phối cảnh,

Mà AB = 3, BC = 6, CA = 5 suy ra A’B’ = 9, B’C’ = 18, C’A’ = 15.

b) Tam giác A’’B’’C’’là hình đồng dạng phối cảnh của tam giác ABC với điểm I là tâm đồng dạng phối cảnh,

Mà AB = 3, BC = 6, CA = 5 suy ra A’’B’’ = 9, B’’C’’ = 18, C’’A’’ = 15.

c) Xét ∆A’B’C’ và ∆A’’B’’C’’ có:

A’B’ = A’’B’’ = 9; B’C’ = B’’C’’ = 18; A’C’ = A’’C’’ = 15.

Nên ∆A’B’C’ = ∆A’’B’’C’’.

Bài 3 trang 89 SGK Toán 8 - Cánh Diều tập 2

Cho hai hình chữ nhật ABCD và A'B'C'D' có \(\frac{{A'B'}}{{B'C'}} = \frac{{AB}}{{BC}}\). Trên các tia AB, AC, AD ta lần lượt lấy các điểm B'', C'', D'' sao cho \(\frac{{AB''}}{{AB}} = \frac{{AC''}}{{AC}} = \frac{{AD''}}{{AD}} = \frac{{B'C'}}{{BC}}\). Chứng minh:

a) Hình chữ nhật AB''C''D'' đồng dạng phối cảnh với hình chữ nhật ABCD;

b) AB'' = A'B', B''C'' = B'C';

c) Hai hình chữ nhật ABCD và A'B'C'D' là đồng dạng

Phương pháp: 

a) Dựa vào khái niệm đồng dạng phối cảnh để chứng minh.

b) Dựa vào các tỉ lệ đề bài đã cho để chứng minh các đẳng thức.

c) Dựa vào khái niệm đồng dạng phối cảnh để chứng minh.

Lời giải:

a) Ba đường thẳng AB’’, AC’’, AD’’ cùng đi qua điểm A và nên hai hình chữ nhật A’’B’’C’’D’’ và ABCD là đồng dạng phối cảnh và điểm A là tâm đồng dạng phối cảnh.

b) Hai hình chữ nhật ABCD và A’B’C’D’ có 

  (do A’’B’’C’’D’’ và ABCD là đồng dạng phối cảnh)

Do đó AB’’ = A’B’, B’’C’’ = B’C’.

c) Hai hình chữ nhật A’’B’’C’’D’’ và A’B’C’D’ có: AB’’ = A’B’, B’’C’’ = B’C’ nên hai hình chữ nhật A’B’C’D’ và A’’B’’C’’D’’ bằng nhau.

Mà hình chữ nhật A’’B’’C’’D’’ đồng dạng phối cảnh với hình chữ nhật ABCD.

Vậy hai hình chữ nhật ABCD và A’B’C’D’ là đồng dạng. 

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan