Bài 1 trang 176 SGK Toán lớp 5
Câu hỏi:
Tính
a) \(1\dfrac{5}{7} \times \dfrac{3}{4};\)
b) \(\dfrac{{10}}{{11}}:1\dfrac{1}{3};\)
c) \(3,57 \times 4,1 + 2,43 \times 4,1;\)
d) \(3,42 : 0,57 \times 8,4 - 6,8.\)
Phương pháp:
a, b) Đổi hỗn số về dạng phân số rồi thực hiện phép nhân, phép chia hai phân số.
c) Áp dụng công thức nhân một tổng với một số: \((a+b)\times c = a \times c + b \times c\).
d) Biểu thức có các phép tính cộng, trừ, nhân, chia thì thực hiện phép tính nhân, chia trước, thực hiện phép tính cộng, trừ sau.
Lời giải:
a) \(1\dfrac{5}{7} \times \dfrac{3}{4} = \dfrac{{12}}{7} \times \dfrac{3}{4} = \dfrac{{12 \times 3}}{{7 \times 4}}\) \( = \dfrac{{4 \times 3 \times 3}}{{7 \times 4}} = \dfrac{9}{7};\)
b) \(\dfrac{{10}}{{11}}:1\dfrac{1}{3} = \dfrac{{10}}{{11}}:\dfrac{4}{3} = \dfrac{{10}}{{11}} \times \dfrac{3}{4}\) \( = \dfrac{{10 \times 3}}{{11 \times 4}} = \dfrac{{5 \times 2 \times 3}}{{11 \times 2 \times 2}} = \dfrac{{15}}{{22}};\)
c) \(3,57 \times 4,1 + 2,43 \times 4,1\)
\(= (3,57 + 2,43) \times 4,1 \)
\(= 6 \times 4,1 \)
\(= 24,6 \)
d) \(3,42 : 0,57 \times 8,4 - 6,8\)
\(= 6 \times 8,4 - 6, 8\)
\(= 50,4 - 6,8\)
\(= \;43,6\)
Bài 2 trang 177 SGK Toán lớp 5
Câu hỏi:
Tính bằng cách thuận tiện nhất:
\(a) \;\dfrac{{21}}{{11}} \times \dfrac{{22}}{{17}} \times \dfrac{{68}}{{63}} \) \( b) \;\dfrac{5}{{14}} \times \dfrac{7}{{13}} \times \dfrac{{26}}{{25}} \)
Phương pháp:
Tách tử số và mẫu số thành tích của các thừa số, sau đó chia nhẩm tích ở tử số và mẫu số cho các thừa số chung.
Lời giải:
a) \(\dfrac{{21}}{{11}} \times \dfrac{{22}}{{17}} \times \dfrac{{68}}{{63}} = \dfrac{{21 \times 22 \times 68}}{{11 \times 17 \times 63}}\)
\(= \dfrac{{21 \times 11 \times 2 \times 17 \times 4}}{{11 \times 17 \times 21 \times 3}}\)\(= \dfrac{{2 \times 4}}{3} = \dfrac{8}{3}\)
b) \(\dfrac{5}{{14}} \times \dfrac{7}{{13}} \times \dfrac{{26}}{{25}} = \dfrac{{5 \times 7 \times 26}}{{14 \times 13 \times 25}}\)
\(= \dfrac{{5 \times 7 \times 13 \times 2}}{{7 \times 2 \times 13 \times 5 \times 5}} = \dfrac{1}{5}\)
Bài 3 trang 177 SGK Toán lớp 5
Câu hỏi:
Một bể bơi dạng hình hộp chữ nhật có chiều dài \(22,5m\), chiều rộng \(19,2m\). Nếu bể chứa \(414,72m^3\) nước thì mực nước trong bể lên tới \(\dfrac{4}{5}\) chiều cao của bể. Hỏi chiều cao của bể là bao nhiêu mét ?
Phương pháp:
- Tính diện tích đáy bể = chiều dài \(\times\) chiều rộng.
- Tính chiều cao mực nước trong bể = thể tích nước trong bể \(:\) diện tích đáy bể.
- Tính chiều cao của bể = chiều cao mực nước trong bể \(:4 \times 5\).
Lời giải:
Diện tích đáy bể bơi là:
22,5 x 19,2 = 432 (m2)
Chiều cao mực nước trong bể là:
414,72 : 432 = 0,96m.
Chiều cao bể bơi là:
\(0,96:4 × 5 = 1,2\;(m)\)
Đáp số: 1,2m.
Bài 4 trang 177 SGK Toán lớp 5
Câu hỏi:
Một con thuyền đi với vận tốc 7,2km/giờ khi nước lặng, vận tốc của dòng nước là 1,6km/giờ.
a) Nếu thuyền đi xuôi dòng thì sau 3,5 giờ sẽ đi được bao nhiêu ki-lô-mét ?
b) Nếu thuyền đi ngược dòng thì cần bao nhiêu thời gian để đi được quãng đường như khi xuôi dòng trong 3,5 giờ ?
Phương pháp:
Áp dụng các công thức:
- Vận tốc xuôi dòng = vận tốc khi nước lặng + vận tốc dòng nước.
- Vận tốc ngược dòng = vận tốc khi nước lặng – vận tốc dòng nước.
- Quãng đường = vận tốc xuôi dòng × thời gian đi xuôi dòng = vận tốc ngược dòng × thời gian đi ngược dòng.
Lời giải:
a) khi xuôi dòng vận tốc thuyền là:
7,2 + 1,6 = 8,8 (km/giờ)
Thuyền xuôi dòng sau 3,5 giờ thì đi được:
8,8 x 3,5 = 30,8 (km)
b) Khi ngược dòng vận tốc thuyền là:
7,2 - 1,6 = 5,6 (km/giờ)
Thời gian thuyền đi ngược dòng quãng sông 30,8km là:
30,8 : 5,6 = 5,5 (giờ) hay 5 giờ 30 phút.
Đáp số: a) 30,8km ;
b) 5 giờ 30 phút.
Bài 5 trang 177 SGK Toán lớp 5
Câu hỏi:
Tìm \(x\):
\(8,75 \times x + 1,25 \times x = 20\)
Phương pháp:
Áp dụng công thức nhân một số với một tổng:
\( a \times c + b \times c =(a+b)\times c \)
Lời giải:
\(8,75 \times x + 1,25 \times x = 20 \)
\( \left({8,75 + 1,25} \right) \times x = 20 \)
\( 10 \times x\; = 20 \)
\( \;x = 20:10 \)
\( \;x = 2\)
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục