Cho hai đường tròn có bán kính khác nhau và nằm trên hai mặt phẳng song song. Hãy chỉ ra những phép vị tự biến đường tròn này thành đường tròn kia.
Giải
Gọi \(\left( {O;R} \right)\) và \(\left( {{O'};{R'}} \right)\) là hai đường tròn nằm trên hai mặt phẳng song song, với \(R \ne {R'}\).
Đặt \(k = {{{R'}} \over R}\) thì \(k \ne 1\). Khi đó, tồn tại hai điểm \(I\) và \(I'\) sao cho \(\overrightarrow {I{O'}} = k\overrightarrow {IO} ,\overrightarrow {{I'}{O'}} = - k\overrightarrow {{I'}O} \). Dễ thấy rằng phép vị tự tâm \(I\), tỉ số k và phép vị tự tâm \(I'\), tỉ số - k đều biến đường tròn \(\left( {O;R} \right)\) thành đường tròn \(\left( {{O'};{R'}} \right)\).
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục