Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2 trang 54 Sách bài tập Hình học lớp 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Cho hai đường tròn (O;R) và (O’;R’)

Cho hai đường tròn (O;R)(O’;R’) nằm trên hai mặt phẳng song song (P) và (Q) sao cho OO’ vuông góc với (P). Đặt OO’ = h. Chứng minh rằng có mặt cầu đi qua hai đường tròn trên, tính diện tích mặt cầu đó.

Giải

(h.48)

Giả sử \(R \le R'\). Vì \(OO' \bot (P)\) nên mọi điểm thuộc OO’ cách đều các điểm của đường tròn (O;R), đồng thời cách đều các điểm của đường tròn (O’;R’),

Xét mp(R) qua OO’ và hai mặt phẳng (P), (Q) theo hai giao tuyến OA, O’A', \(A \in (O;R),A' \in (O';R').\) Trong mp(R) , đường trung trực AA’ cắt OO’ tại J. Khi đó, mặt cầu tâm J, bán kính JA đi qua cả hai đường tròn (O;R) và (O’;R’).

Gọi S là diện tích mặt cầu đó thì

\(S = 4\pi .J{A^2} = 4\pi (O{A^2} + J{O^2}) = 4\pi ({R^2} + J{O^2}).\)

Kẻ IH song song với \(AO(H \in OO')\)  thì \(OH = {h \over 2}\).

Từ OH+JH=JO, suy ra \({h \over 2} + JH = JO.\) Kẻ AK song song với OO’(\((K \in O'A')\) thì có \({{HJ} \over {A'K}} = {{IH} \over {AK}},\) từ đó

\(HJ = {{{{R' + R} \over 2}.(R' - R)} \over h} = {{R{'^2} - {R^2}} \over {2h}}.\)

Vậy \(JO = {h \over 2} + {{R{'^2} - {R^2}} \over {2h}} = {{{h^2} + R{'^2} - {R^2}} \over {2h}}\) và diện tích mặt cầu phải tìm là

\(\eqalign{  & S = 4\pi \left[ {{R^2} + {{{{\left( {{h^2} + R{'^2} - {R^2}} \right)}^2}} \over {4{h^2}}}} \right]  \cr  &  = \pi .{{4{R^2}{h^2} + ({h^2} + R{'^2} - {R^2})^2} \over {{h^2}}}. \cr} \)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan