Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 20, 21, 22, 23, 24 trang 49, 50 SGK Toán 9 tập 2 - Luyện tập

Bình chọn:
4.9 trên 7 phiếu

Giải bài 20, 21, 22 trang 49; bài 23, 24 trang 50 sách giáo khoa (SGK) Toán lớp 9 tập 2 bài Luyện tập. Bài 23 Rada của một máy bay trực thăng theo dõi chuyển động của ôtô trong 10 phút, phát hiện rằng vận tốc v của ôtô thay đổi phụ thuộc vào thời gian bởi công thức

Bài 20 trang 49 SGK Toán lớp 9 tập 2

Câu hỏi:

Giải các phương trình:

a) \(25{x^2}-{\rm{ }}16{\rm{ }} = {\rm{ }}0\)

b) \(2{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\)

c) \(4,2{x^2} + {\rm{ }}5,46x{\rm{ }} = {\rm{ }}0\)

d) \(4{x^2} - {\rm{ }}2\sqrt 3 x{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}\sqrt 3 \)

Lời giải:

a) 

Ta có:

\(25{x^2}{\rm{  - }}16 = 0 \Leftrightarrow 25{x^2} = 16 \Leftrightarrow {x^2} = {\rm{ }} \dfrac{16}{25}\)

\(⇔ x = ±\)\(\sqrt{\dfrac{16}{25}}\) = ±\(\dfrac{4}{5}\)

b) 

\(2{x^2} + {\rm{ }}3{\rm{ }} = {\rm{ }}0\). 

Ta có: \(x^2 \ge 0\) với mọi \(x\) suy ra \(VT=2x^2+3 \ge 3> 0 \) với mọi \(x\).

Mà \(VP=0\). Do đó phương trình đã cho vô nghiệm.

c) 

Ta có:

\(4,2{x^2} + {\rm{ }}5,46x{\rm{ }} = {\rm{ }}0{\rm{ }} \Leftrightarrow {\rm{ }}2x\left( {2,1x{\rm{ }} + {\rm{ }}2,73} \right){\rm{ }} = {\rm{ }}0\)

\( \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
2,1x + 2,73 = 0 \hfill \cr} \right. \Leftrightarrow \left[ \matrix{
x = 0 \hfill \cr 
x = - 1,3 \hfill \cr} \right.\)

Vậy phương trình có hai nghiệm \(x=0;x=-1,3\)

d) 

Ta có:

\(4{x^2} - {\rm{ }}2\sqrt 3 x{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}\sqrt 3 \)

\(\Leftrightarrow {\rm{ }}4{x^2} - {\rm{ }}2\sqrt 3 x{\rm{ }}-{\rm{ }}1{\rm{ }} + {\rm{ }}\sqrt 3 {\rm{ }} = {\rm{ }}0\)

Có \(a = 4,\  b’ = -\sqrt{3},\ c = -1 + \sqrt{3}\)

Suy ra \(\Delta' {\rm{ }} = {\rm{ }}{\left( { - \sqrt 3 } \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}\left( { - 1{\rm{ }} + {\rm{ }}\sqrt 3 } \right){\rm{ }}\)

\(= {\rm{ }}3{\rm{ }} + {\rm{ }}4{\rm{ }} - {\rm{ }}4\sqrt 3 {\rm{ }} = {\rm{ }}{\left( {2{\rm{ }} - {\rm{ }}\sqrt 3 } \right)^2} > 0\)

\( \Rightarrow \sqrt {\Delta '} {\rm{ }} = {\rm{ }}2{\rm{ }} - {\rm{ }}\sqrt 3 \)

Do đó phương trình có hai  nghiệm phân biệt:

\({x_1}\) \( = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}\)\(=\dfrac{\sqrt{3} - 2+ \sqrt{3}}{4}\)  \(=\dfrac{\sqrt{3} - 1}{2}\) ,

\({x_2}\)\( = \dfrac{{ - b' + \sqrt {\Delta '} }}{a}\) \(=\dfrac{\sqrt{3} +2 - \sqrt{3}}{4}\) \(=\dfrac{1}{2}\)

Bài 21 trang 49 SGK Toán lớp 9 tập 2

Câu hỏi:

Giải vài phương trình của An Khô-va-ri-zmi (Xem Toán 7, Tập 2, tr.26):

a) \({x^2} = {\rm{ }}12x{\rm{ }} + {\rm{ }}288\)

b) \(\dfrac{1}{12}x^2 + \dfrac{7}{12}x = 19\)

Phương pháp: 

Bước 1: Thực hiện chuyển các số hạng sang vế trái, vế phải bằng \(0\).

Bước 2: Áp dụng công thức tính nghiệm thu gọn: \(ax^2+bx+c=0\) (\(a \ne 0\)) với \(b=2b'\) và biệt thức: \(\Delta' =b'^2-ac.\)

+) Nếu \(\Delta' > 0\) thì phương trình có hai nghiệm phân biệt:

\(x_1=\dfrac{-b'+\sqrt{\Delta'}}{a};\ x_2=\dfrac{-b'-\sqrt{\Delta'}}{a}\)

Lời giải: 

a) Ta có:

\({x^2} = {\rm{ }}12x{\rm{ }} + {\rm{ }}288{\rm{ }} \Leftrightarrow {\rm{ }}{x^2} - {\rm{ }}12x{\rm{ }} - {\rm{ }}288{\rm{ }} = {\rm{ }}0\)

\(\Rightarrow \Delta' {\rm{ }} = {\rm{ }}{\left( { - 6} \right)^{2}}-{\rm{ }}1{\rm{ }}.{\rm{ }}\left( { - 288} \right){\rm{ }} = {\rm{ }}36{\rm{ }} + {\rm{ }}288{\rm{ }} = {\rm{ }}324  > 0 \)

Do đó phương trình đã cho có hai nghiệm phân biệt:

\({x_1} =\dfrac{6-\sqrt{324}}{1}=6-18=-12\).

\({x_2} =\dfrac{6+\sqrt{324}}{1}=6+18=24\). 

b) 

Ta có:

\(\dfrac{1}{12}{x^2} + \dfrac{7 }{12}x = 19\)

\(\Leftrightarrow {x^2} + 7x-228= 0\)

\(\Rightarrow {\rm{ }}\Delta {\rm{ }} = {\rm{ }}49{\rm{ }}-{\rm{ }}4{\rm{ }}.{\rm{ }}\left( { - 228} \right){\rm{ }} = {\rm{ }}49{\rm{ }} + {\rm{ }}912{\rm{ }}\)

           \(= {\rm{ }}961{\rm{ }} = {\rm{ }}{31^2} > 0\)

Do đó phương trình đã cho có hai nghiệm phân biệt:

\({x_1} =\dfrac{ - 7 + 31}{2} = 12,\)

\({x_2} = \dfrac{ - 7 - 31}{2} =  - 19\)

Bài 22 trang 49 SGK Toán lớp 9 tập 2

Câu hỏi:

Không giải phương trình, hãy cho biết mỗi phương trình sau có bao nhiêu nghiệm:

a) \(15{x^2} + {\rm{ }}4x{\rm{ }}-{\rm{ }}2005{\rm{ }} = {\rm{ }}0\)

b) \(\displaystyle - {{19} \over 5}{x^2} - \sqrt 7 x + 1890 = 0\)

Lời giải: 

a) 

Ta có: \(a=15; \, \, b=4; \, \, c=-2005\)

Cách 1:

Ta có: \(\Delta = 4{^2} - 4.15.(-2005) = 120316 > 0\) 

\(\Rightarrow \) phương trình đã cho có hai nghiệm phân biệt.

Cách 2:

\(\Rightarrow a.c=15.(-2005) <0\)

\(\Rightarrow \) phương trình đã cho có hai nghiệm phân biệt.

b) 

Ta có: \(a=-\dfrac{19}{5};\, \, \, b=-\sqrt{7}; \, \, \, c=1890 \)

Cách 1:

\(\Delta = (-\sqrt{7}){^2} - 4.(-\dfrac{19}{5}).1890= 28735 > 0\) 

\(\Rightarrow \) phương trình đã cho có hai nghiệm phân biệt.

Cách 2:

\(\Rightarrow a.c=(-\dfrac{19}{5}).1890 <0. \)

\(\Rightarrow \) phương trình đã cho có hai nghiệm phân biệt.

Bài 23 trang 50 SGK Toán lớp 9 tập 2

Câu hỏi:

Rada của một máy bay trực thăng theo dõi chuyển động của ôtô trong 10 phút, phát hiện rằng vận tốc v của ôtô thay đổi phụ thuộc vào thời gian bởi công thức:

v = 3t2 -30t + 135

(t tính bằng phút, v tính bằng km/h)

a) Tính vận tốc của ôtô khi t = 5 phút.

b) Tính giá trị của t khi vận tốc ôtô bằng 120km/h (làm tròn kết quả đến chữ số thập phân thứ hai).

Phương pháp: 

Tính vận tốc của ôtô khi \(t = 5\) phút.

Tính giá trị của \(t\) khi vận tốc ôtô bằng \(120 km/h\) (làm tròn kết quả đến chữ số thập phân thứ hai).

Lời giải: 

a) Tại t = 5, ta có: v = 3.52 – 30.5 + 135 = 60 (km/h)

b) 

Cho vận tốc \(v=f(t)=120\) và giải phương trình bậc hai ẩn \(t\) để tìm thời gian \(t.\)

+) Dựa vào công thức nghiệm thu gọn để giải phương trình: \(a x^2 +2b'x+c=0 \, \, (a \neq 0).\)

Có \(\Delta ' = {(b')^2} - ac > 0\) thì phương trình có hai nghiệm phân biệt: 

\(\left[ \begin{array}{l}
{x_1} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a}\\ 
{x_2} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a}
\end{array} \right..\)

Bài 24 trang 50 SGK Toán lớp 9 tập 2

Câu hỏi:

Cho phương trình (ẩn \(x\)) \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\).

a) Tính \(\Delta '\).

b) Với giá trị nào của \(m\) thì phương trình có hai nghiệm phân biệt ? Có nghiệm kép ? Vô nghiệm ?

Lời giải:

a) \({x^2}-{\rm{ }}2\left( {m{\rm{ }}-{\rm{ }}1} \right)x{\rm{ }} + {\rm{ }}{m^2} = {\rm{ }}0\) có \(a = 1, b = -2(m - 1), \, \,  b' = -(m - 1), \, \,  c{\rm{ }} = {\rm{ }}{m^2}.\)

\(\Rightarrow \Delta '{\rm{ }} = {\rm{ }}{\left[ { - \left( {m{\rm{ }} - {\rm{ }}1} \right)} \right]^2}-{\rm{ }}{m^2} \\= {\rm{ }}{m^2}-{\rm{ }}2m{\rm{ }} + {\rm{ }}1{\rm{ }}-{\rm{ }}{m^2} = {\rm{ }}1{\rm{ }}-{\rm{ }}2m.\)

b) Ta có \(\Delta' = 1 – 2m\) và \(a=1 \ne 0\)

+) Phương trình có hai nghiệm phân biệt \( \Leftrightarrow \Delta ' > 0 \Leftrightarrow 1 - 2m > 0 \Leftrightarrow m < \dfrac{1}{2}.\)

+) Phương trình có nghiệm kép \( \Leftrightarrow \Delta ' = 0 \Leftrightarrow 1 - 2m = 0 \Leftrightarrow m = \dfrac{1}{2}.\)

+) Phương trình vô nghiệm \( \Leftrightarrow \Delta ' < 0 \Leftrightarrow 1 - 2m < 0 \Leftrightarrow m > \dfrac{1}{2}.\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan