Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 25, 26, 27, 28 trang 52, 53 SGK Toán 9 tập 2 - Hệ thức Vi-ét và ứng dụng

Bình chọn:
4.9 trên 7 phiếu

Giải bài 25 trang 52; bài 26, 27, 28 trang 53 sách giáo khoa (SGK) Toán lớp 9 tập 2 bài Hệ thức Vi-ét và ứng dụng. Bài 25 Đối với phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chố trống (..)

Bài 25 trang 52 SGK Toán lớp 9 tập 2

Câu hỏi:

 Đối với phương trình sau, kí hiệu x1 và x2 là hai nghiệm (nếu có). Không giải phương trình, hãy điền vào những chố trống (..):

a) 2x2 – 17x + 1 = 0;

Δ = …; x1 + x2 = …; x1.x2 = …;

b) 5x2 – x – 35 = 0;

Δ = …; x1 + x2 = …; x1.x2 = …;

c) 8x2 – x + 1 = 0 ;

Δ = …; x1 + x2 = …; x1.x2 = …;

d) 25x2 + 10x + 1 = 0 ;

Δ = …; x1 + x2 = …; x1.x2 = …;

Lời giải: 

a) 

\(2{x^2}-{\rm{ }}17x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) có \(a = 2, b = -17, c = 1\)

\(\Delta {\rm{ }} = {\rm{ }}{\left( { - 17} \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}2{\rm{ }}.{\rm{ }}1{\rm{ }} = {\rm{ }}289{\rm{ }}-{\rm{ }}8{\rm{ }} = {\rm{ }}281\)

\(\displaystyle{x_1} + {x_2} =  - {{ - 17} \over 2} = {{17} \over 2};{x_1}{x_2} = {1 \over 2}\)

b) 

\(5{x^2}-{\rm{ }}x{\rm{ }} - {\rm{ }}35{\rm{ }} = {\rm{ }}0\) có \(a = 5, b = -1, c = -35\)

\(\Delta  = {\left( { - 1} \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}5{\rm{ }}.{\rm{ }}\left( { - 35} \right) = 1 + 700 = 701\)

\(\displaystyle{x_1} + {x_2} =  - {{ - 1} \over 5} = {\rm{ }}{1 \over 5};{x_1}{x_2} = {{ - 35} \over 5} =  - 7\)

c) 

\(8{x^2}-{\rm{ }}x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) có \(a = 8, b = -1, c = 1\)

\(\Delta {\rm{ }} = {\rm{ }}{\left( { - 1} \right)^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}8{\rm{ }}.{\rm{ }}1{\rm{ }} = {\rm{ }}1{\rm{ }} - {\rm{ }}32{\rm{ }} = {\rm{ }} - 31{\rm{ }} < {\rm{ }}0\)

Phương trình vô nghiệm nên không có hệ thức Viet tổng và tích 2 nghiệm.

d) 

\(25{x^2} + {\rm{ }}10x{\rm{ }} + {\rm{ }}1{\rm{ }} = {\rm{ }}0\) có \(a = 25, b = 10, c = 1\)

\(\Delta  = {\rm{ }}{10^2}-{\rm{ }}4{\rm{ }}.{\rm{ }}25{\rm{ }}.{\rm{ }}1{\rm{ }} = {\rm{ }}100{\rm{ }} - {\rm{ }}100{\rm{ }} = {\rm{ }}0\)

\(\displaystyle{x_1} + {x_2} =  - {{10} \over {25}} =  - {2 \over 5};{x_1}{x_2} = {1 \over {25}}\)

Bài 26 trang 53 SGK Toán lớp 9 tập 2

Câu hỏi:

Dùng điều kiện \(a + b + c = 0\) hoặc \(a - b + c = 0\) để tính nhẩm nghiệm của mỗi phương trình sau :

a) 35x2 – 37x + 2 = 0;

b) 7x2 + 500x – 507 = 0;

c) x2 – 49x – 50 = 0;

d) 4321x2 + 21x – 4300 = 0.

Phương pháp:

+) TH1: Nếu phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có a + b + c = 0 thì phương trình có một nghiệm là \({x_1} = 1\), nghiệm còn lại là \({x_2} = \dfrac{c}{a}\)

+) TH2: Nếu phương trình \(a{x^2} + bx + c = 0\left( {a \ne 0} \right)\) có a - b + c = 0 thì phương trình có một nghiệm là \({x_1} = -1\), nghiệm còn lại là \({x_2} = - \dfrac{c}{a}\)

Lời giải: 

a) 

\(35{x^2}-{\rm{ }}37x{\rm{ }} + {\rm{ }}2{\rm{ }} = {\rm{ }}0\) có \(a = 35, b = -37, c = 2\)

Do đó: \(a + b + c = 35 + (-37) + 2 = 0\)

nên \(\displaystyle {x_1} = 1;{x_2} = {2 \over {35}}\)

b) 

 \(7{x^2} + {\rm{ }}500x{\rm{ }} - {\rm{ }}507{\rm{ }} = {\rm{ }}0\) có \(a=7, b = 500, c=-507\)

Do đó: \(a + b + c = 7 + 500 +(- 507)=0\)

nên \(\displaystyle{x_1} = 1;{x_2} =  - {{507} \over 7}\) 

c) 

\({x^2} - {\rm{ }}49x{\rm{ }} - {\rm{ }}50{\rm{ }} = {\rm{ }}0\) có \(a = 1, b = -49, c = -50\)   

Do đó \(a - b + c = 1 - (-49) +(- 50) = 0\)

nên \(\displaystyle{x_1} =  - 1;{x_2} =  - {{ - 50} \over 1} = 50\) 

d) 

\(4321{x^2} + {\rm{ }}21x{\rm{ }} - {\rm{ }}4300{\rm{ }} = {\rm{ }}0\) có \(a = 4321, b = 21, c = -4300\)

Do đó \(a - b + c = 4321 - 21 + (-4300) = 0\) 

nên \(\displaystyle{x_1} =  - 1;{x_2} =  - {{ - 4300} \over {4321}} = {{4300} \over {4321}}\).

Bài 27 trang 53 SGK Toán lớp 9 tập 2

Câu hỏi:

Dùng hệ thức Vi-et để tính nhẩm các nghiệm của phương trình.

a) x2 – 7x + 12 = 0;

b) x2 + 7x + 12 = 0.

Lời giải: 

a) 

\({x^2}-{\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\) có \(a = 1, b = -7, c = 12\)

Suy ra \(\Delta  = {\left( { - 7} \right)^2} - 4.1.12 = 1 > 0\)

Nên phương trình có 2 nghiệm \(x_1;x_2\), theo hệ thức Vi-et ta có:

\(\displaystyle{x_1} + {x_2} = {\rm{ }} - {{ - 7} \over 1} = 7 = 3 + 4\) 

\(\displaystyle{x_1}{x_2} = {\rm{ }}{{12} \over 1} = 12 = 3.4\)

Vậy \({x_1} = {\rm{ }}3,{\rm{ }}{x_2} = {\rm{ }}4\). 

b) 

\({x^2} + {\rm{ }}7x{\rm{ }} + {\rm{ }}12{\rm{ }} = {\rm{ }}0\) có \(a = 1, b = 7, c = 12\)

Suy ra \(\Delta  = 7^2 - 4.1.12 = 1 > 0\)

Nên phương trình có 2 nghiệm \(x_1;x_2\) , theo hệ thức Vi-et ta có:

\(\displaystyle{x_1} + {x_2} = {\rm{ }} - {7 \over 1} =  - 7 =  - 3 + ( - 4)\)

\(\displaystyle{x_1}{x_2} = {\rm{ }}{{12} \over 1} = 12 = ( - 3).( - 4)\)

Vậy \({x_1} = {\rm{ }} - 3,{\rm{ }}{x_2} = {\rm{ }} - 4\).

Bài 28 trang 53 SGK Toán lớp 9 tập 2

Câu hỏi:

 Tìm hai số u và v trong mỗi trường hợp sau:

a) u + v = 32 , uv = 231 

b) u + v = -8, uv = -105

c) u + v = 2, uv = 9

Phương pháp: 

Nếu hai số có tổng bằng S và tích bằng P (và thỏa mãn điều kiện \({S^2} - 4P\ge 0\) ) thì hai số đó là hai nghiệm của phương trình \({x^2} - Sx + P = 0\).

Sau đó tính \(\Delta\) hoặc \(\Delta'\) và sử dụng công thức nghiệm (hoặc công thức nghiệm thu gọn)  để tìm ra nghiệm của phương trình

Lời giải: 

a) 

Vì \({32^2} - 4.231 = 100 > 0\)

Nên \(u\) và \(v\) là nghiệm của phương trình: \({x^2}-{\rm{ }}32x{\rm{ }} + {\rm{ }}231{\rm{ }} = {\rm{ }}0\)

\(a = 1; b' = -16; c = 231.\)  

\(\Delta' {\rm{ }} = {\rm{ ( - }}16{)^2}-{\rm{ }}231.1{\rm{ }} = {\rm{ }}256{\rm{ }}-{\rm{ }}231{\rm{ }} = {\rm{ }}25,{\rm{ }}\sqrt {\Delta '} {\rm{ }} = {\rm{ }}5\)

\(\begin{array}{l}
{x_1} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a} = \dfrac{{ - \left( { - 16} \right) - 5}}{1} = 11\\
{x_2} = \dfrac{{ - b' + \sqrt {\Delta '} }}{a} = \dfrac{{ - \left( { - 16} \right) + 5}}{1} = 21
\end{array}\)

Vậy \(u = 21, v = 11\) hoặc \(u = 11, v = 21\)

b) 

Vì \({\left( { - 8} \right)^2} - 4.\left( { - 105} \right) = 484 > 0\)

Nên \(u\), \(v\) là nghiệm của phương trình:

\({{x^2} + {\rm{ }}8x{\rm{ }}-{\rm{ }}105{\rm{ }} = {\rm{ }}0}\)

\(a = 1; b' = 4; c = - 105\)

 Ta có: \(Δ’ = 16 – 1.(-105) = 121 > 0\)

\(\begin{array}{l}
{x_1} = \dfrac{{ - b' - \sqrt {\Delta '} }}{a} = \dfrac{{ - 4 - 11}}{1} =  - 15\\
{x_2} = \dfrac{{ - b '+ \sqrt {\Delta '} }}{a} = \dfrac{{ - 4 + 11}}{1} = 7
\end{array}\)

Vậy \(u = 7, v = -15\) hoặc \(u = -15, v = 7\).

c)

 Vì \({{2^{2}}-{\rm{ }}4{\rm{ }}.{\rm{ }}9{\rm{ }} < {\rm{ }}0}\) nên không có giá trị nào của \(u\) và \(v\) thỏa mãn điều kiện đã cho.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan