Cho hìnhchữ nhật ABCD với AB = a, BC = 2a và đường thẳng \(\Delta \) nằm trong mặt phẳng (ABCD), \(\Delta \) song song với AD và cách AD một khoảng bằng x, \(\Delta \) không có điểm chung với hình chữ nhật ABCD.
1) Tính thể tích của hình tròn xoay tạo nên khi quay hình chữ nhật ABCD quanh \(\Delta \).
2) Xác định x để thể tích nói trên gấp ba lần thể tích hình cầu có bán kính bằng cạnh AB.
Giải
1) Kí hiệu O, O’ lần lượt là giao điểm của các đường thẳng AB, CD với \(\Delta \). Gọi V là thể tích cần tìm, V2 là thể tích hình trụ tạo nên khi quay hình chữ nhật OBCO’ quanh \(\Delta \) ( với OA < OB) hoặc hình tạo nên khi quay hình chữ nhật OADO’ quanh \(\Delta \) (với OA > OB); V1 là thể tích hình trụ tạo nên khi quay hình chữ nhật OADO’ quanh \(\Delta \) ( với OA < OB) hoặc hình trụ tạo nên khi quay hình chữ nhật OBCO’ quanh \(\Delta \) ( với OA > OB). Khi đó V = V2 - V1.
Từ đó, với OA < OB thì
\(V = \pi O{B^2}.BC - \pi O{A^2}.AD\)
\(= 2a\pi \left[ {{{(x + a)}^2} - {x^2}} \right] \)
\(= 2{a^2}\pi (2x + a)\)
và với OA > OB thì
\(V = \pi O{A^2}.AD - \pi O{B^2}.BC \)
\(= 2a\pi \left[ {{x^2}-{{(x - a)}^2} } \right] \)
\(= 2{a^2}\pi (2x - a)\)
2) Thể tích khối cầu bán kính bằng AB là \({4 \over 3}\pi {a^3}\).Theo giả thiết ta có
\(4\pi {a^3} = 2\pi {a^2}(2x + a)\) (với OA < OB)
Hoặc \(4\pi {a^3} = 2\pi {a^2}(2x - a)\) ( với OA > OB).
Từ đó \(x = {a \over 2}\) ( với OA < OB) hoặc \(x = {{3a} \over 2}\) ( với OA > OB).
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục