Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 24, 25 trang 111, 112 SGK Toán 9 tập 1 - Luyện tập

Bình chọn:
4.9 trên 7 phiếu

Giải bài 24 trang 111; bài 25 trang 112 sách giáo khoa Toán lớp 9 tập 1 bài Luyện tập. Bài 25 Cho đường tròn tâm O có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA. a) Tứ giác OCAB là hình gì? Vì sao?

Bài 24 trang 111 SGK Toán lớp 9 tập 1

Câu hỏi:

Cho đường tròn \((O)\), dây \(AB\) khác đường kính. Qua \(O\) kẻ đường vuông góc với \(AB\), cắt tiếp tuyến tại \(A\) của đường tròn ở điểm \(C\). 

a) Chứng minh rằng \(CB\) là tiếp tuyến của đường tròn.

b) Cho bán kính của đường tròn bằng \(15cm,\ AB=24cm\). Tính độ dài \(OC\).

Lời giải:

a) Gọi \(H\) là giao điểm của \(OC\) và \(AB\).

Xét đường tròn (O) có \(OH\perp AB\) tại H mà OH là 1 phần đường kính và AB là dây của đường tròn nên \(HA=HB=\dfrac{AB}2\) (Định lý 2 - trang 103).

Suy ra \(OC\) là đường trung trực của \(AB\), do đó \(CB=CA\) (tính chất)

Xét \(\Delta CBO\) và \(\Delta CAO\) có:

\(CO\) chung 

\(CA=CB\) (chứng minh trên) 

\(OB=OA=R\)

Suy ra \(\Delta CBO=\Delta CAO\) (c.c.c)

\(\Rightarrow \widehat{CBO}=\widehat{CAO}\)( 2 góc tương ứng)  (1)

Vì \(AC\) là tiếp tuyến của đường tròn \((O)\) nên:

\(AC\perp OA\Rightarrow \widehat{CAO}=90^{\circ}\)   (2)

Từ (1) và (2) suy ra \(\widehat{CBO}=90^{\circ}\).

Tức là \(CB\) vuông góc với \(OB\), mà \(OB\) là bán kính của \((O)\).

Vậy \(CB\) là tiếp tuyến của đường tròn \((O)\).

b) Ta có: \(OA=OB=R=15 cm;\)

\(\ HA=\dfrac{AB}{2}=\dfrac{24}{2}=12 cm\).

Xét tam giác \(HOA\) vuông tại \(H\), áp dụng định lí Pytago, ta có: 

\(OA^2=OH^2+AH^2\)

\(\Leftrightarrow OH^{2}=OA^{2}-AH^{2}=15^{2}-12^{2}=81\)

\(\Rightarrow OH=\sqrt{81}=9(cm)\)

Xét tam giác \(BOC\) vuông tại \(B\), áp dụng hệ thức lượng trong tam giác vuông, ta có:

\(OB^{2}=OC\cdot OH \Rightarrow OC=\dfrac{OB^{2}}{OH}=\dfrac{15^2}{9}=25(cm).\)

Bài 25 trang 112 SGK Toán lớp 9 tập 1

Câu hỏi:

Cho đường tròn tâm O có bán kính OA = R, dây BC vuông góc với OA tại trung điểm M của OA.

a) Tứ giác OCAB là hình gì? Vì sao? 

b) Kẻ tiếp tuyến với đường tròn tại B, nó cắt đường thẳng OA tại E. Tính độ dài BE theo R

Lời giải:

a) Xét đường tròn (O) có OA là 1 phần đường kính và BC là dây của đường tròn mà \(OA\perp BC\Rightarrow MB=MC\) (Theo định lý 2 - trang 103).

Lại có \(MA=MO\) (vì \(M\) là trung điểm)

\(\Rightarrow\) Tứ giác \(ABOC\) là hình bình hành (vì có các đường chéo OA và BC cắt nhau tại trung điểm M mỗi đường)

Mặt khác, \(BC \bot AO\) 

Do đó \(ABOC\) là hình thoi (hình bình hành có hai đường chéo vuông góc nên là hình thoi).

b) Ta có \(ABOC\) là hình thoi nên \(BA=BO\) (tính chất)

Mà \(BO=OA=R\) 

\(\Rightarrow\) \(OB=OA=BA\). Do đó tam giác \(ABO\) đều (Dấu hiệu nhận biết)

\(\Rightarrow \widehat{BOA}=60^{\circ}\) (Tính chất)

Ta có \(EB\) là tiếp tuyến của \((O)\) tại \(B\) \(\Rightarrow EB\perp OB\) hay \(\widehat{EBO}=90^o\).

Xét tam giác \(BOE\) vuông tại \(B\), áp dụng hệ thức giữa cạnh và góc trong tam giác vuông, ta có:

\(BE=BO. \tan 60^{\circ}= R. \tan 60^0=R\sqrt{3}.\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan