Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 28, 29, 30, 31 trang 18, 19 SGK Toán 9 tập 1 - Liên hệ giữa phép chia và phép khai phương

Bình chọn:
4 trên 6 phiếu

Giải bài 28 trang 18; bài 29, 30, 31 trang 19 sách giáo khoa Toán lớp 9 tập 1 bài Liên hệ giữa phép chia và phép khai phương. Bài 30 Rút gọn các biểu thức sau

Bài 28 trang 18 SGK Toán lớp 9 tập 1

Câu hỏi:

Tính:

a) \( \sqrt{\dfrac{289}{225}}\);                                 b) \( \sqrt{2\dfrac{14}{25}}\);

c) \( \sqrt{\dfrac{0,25}{9}}\) ;                               d) \( \sqrt{\dfrac{8,1}{1,6}}\).

Lời giải: 

a) Ta có:

\(\sqrt{\dfrac{289}{225}}=\dfrac{\sqrt{289}}{\sqrt{225}}=\dfrac{\sqrt {17^2}}{\sqrt{15^2}}=\dfrac{17}{15}\).

b) Ta có:

\(\sqrt{2\dfrac{14}{25}}=\sqrt{\dfrac{2.25+14}{25}}=\sqrt{\dfrac{50+14}{25}}\)

\(=\sqrt{\dfrac{64}{25}}=\dfrac{\sqrt{64}}{\sqrt{25}}=\dfrac{\sqrt{8^2}}{\sqrt{5^2}}=\dfrac{8}{5}\).

c) Ta có:

\(\sqrt{\dfrac{0,25}{9}}=\dfrac{\sqrt{0,25}}{\sqrt{9}}=\dfrac{\sqrt{0,5^2}}{\sqrt{3^2}}=\dfrac{0,5}{3}\)

\(=0,5.\dfrac{1}{3}=\dfrac{1}{2}.\dfrac{1}{3}=\dfrac{1}{6}\).

d) Ta có:

\(\sqrt{\dfrac{8,1}{1,6}}=\sqrt{\dfrac{81.0,1}{16.0,1}}=\sqrt{\dfrac{81}{16}}=\dfrac{\sqrt{81}}{\sqrt{16}}=\dfrac{\sqrt{9^2}}{\sqrt{4^2}}=\dfrac{9}{4}\).

Bài 29 trang 19 SGK Toán lớp 9 tập 1

Câu hỏi:

Tính:

a)  \( \dfrac{\sqrt{2}}{\sqrt{18}}\)

b) \( \dfrac{\sqrt{15}}{\sqrt{735}}\)

c) \( \dfrac{\sqrt{12500}}{\sqrt{500}}\)

d) \( \dfrac{\sqrt{6^{5}}}{\sqrt{2^{3}.3^{5}}}\)

Phương pháp:

Sử dụng các công thức sau: 

      \(\dfrac{\sqrt a}{\sqrt b}=\sqrt{\dfrac{a}{b}}\),  với \( a \ge 0 ,\ b >0\).

      \((a.b)^m=a^m.b^m\),  với \(m \in \mathbb{N}\).

Lời giải:  

a) \(\dfrac{\sqrt{2}}{\sqrt{18}}=\sqrt{\dfrac{2}{18}}=\sqrt{\dfrac{2.1}{2.9}}\)\(=\sqrt{\dfrac{1}{9}}=\sqrt {{{\left( {\dfrac{1}{3}} \right)}^2}} =\dfrac{1}{3}\).

b) 

\(\dfrac{\sqrt{15}}{\sqrt{735}}=\sqrt{\dfrac{15}{735}}=\sqrt{\dfrac{15.1}{15.49}}\)\(=\sqrt{\dfrac{1}{49}}=\sqrt {{{\left( {\dfrac{1}{7}} \right)}^2}}\)

\(=\dfrac{1}{7}\).

c) 

\(\dfrac{\sqrt{12500}}{\sqrt{500}}=\sqrt{\dfrac{12500}{500}}=\sqrt{\dfrac{500.25}{500}}\)

\(=\sqrt{25}=\sqrt{5^2}=5\).

d) 

\(\dfrac{\sqrt{6^{5}}}{\sqrt{2^{3}.3^{5}}}=\sqrt{\dfrac{6^5}{2^3.3^5}}\)\(=\sqrt{\dfrac{(2.3)^5}{2^3.3^5}}=\sqrt{\dfrac{2^5.3^5}{2^3.3^5}}\)

\(=\sqrt{\dfrac{2^5}{2^3}}\)\(=\sqrt{\dfrac{2^3.2^2}{2^3}}=\sqrt{2^2}=2\) 

Bài 30 trang 19 SGK Toán lớp 9 tập 1

Câu hỏi:

a) \( \dfrac{y}{x}.\sqrt{\dfrac{x^{2}}{y^{4}}}\) với \(x > 0,\ y ≠ 0\);

b) 2\( y^{2}\).\( \sqrt{\dfrac{x^{4}}{4y^{2}}}\) với \(y < 0\)

c) \(5xy. \sqrt{\dfrac{25x^{2}}{y^{6}}}\) với \(x < 0,\ y > 0\)

d) \( 0,2x^{3}y^{3}.\sqrt{\dfrac{16}{x^{4}y^{8}}}\) với \(x ≠ 0,\ y ≠ 0\)

Lời giải:  

a) 

Ta có:

\(\dfrac{y}{x}.\sqrt{\dfrac{x^{2}}{y^{4}}}=\dfrac{y}{x}.\dfrac{\sqrt{x^2}}{\sqrt{y^{4}}}\)

\(=\dfrac{y}{x}.\dfrac{\sqrt{x^2}}{\sqrt{(y^2)^2}}=\dfrac{y}{x}.\dfrac{|x|}{|y^2|}\) 

Vì \(x> 0\) nên \(|x|=x\).

Vì \(y \ne 0\)  nên  \(y^2 > 0 \Rightarrow |y^2|=y^2\).

\(\Rightarrow \dfrac{y}{x}.\dfrac{|x|}{|y^2|} =\dfrac{y}{x}.\dfrac{x}{y^2}=\dfrac{y}{x}.\dfrac{x}{y.y}=\dfrac{1}{y}\).

Vậy \(\dfrac{y}{x}.\sqrt{\dfrac{x^{2}}{y^{4}}}=\dfrac{1}{y}\).

b) 

Ta có:

\(2y^2.\sqrt{\dfrac{x^{4}}{4y^{2}}}=2y^2.\dfrac{\sqrt{x^4}}{\sqrt{4y^2}}=2y^2.\dfrac{\sqrt{(x^2)^2}}{\sqrt{2^2.y^2}}\)

\(=2y^2.\dfrac{\sqrt{(x^2)^2}}{\sqrt{(2y)^2}}=2y^2.\dfrac{|x^2|}{|2y|}\)

Vì \(x^2 \ge 0 \Rightarrow |x^2|=x^2\).

Vì \(y<0\)  nên  \(2y < 0 \Rightarrow |2y|=-2y\)

\(\Rightarrow 2y^2.\dfrac{|x^2|}{|2y|}=2y^2.\dfrac{x^2}{-2y}=\dfrac{2y^2.x^2}{-2y}\)

\(=\dfrac{x^2.y.2y}{-2y}=-x^2y\).

Vậy \(2y^2.\sqrt{\dfrac{x^{4}}{4y^{2}}}=-x^2y\).

c) 

Ta có:

\(5xy.\sqrt{\dfrac{25x^{2}}{y^{6}}}=5xy.\dfrac{\sqrt{25x^2}}{\sqrt{y^6}}=5xy.\dfrac{\sqrt{5^2.x^2}}{\sqrt{(y^3)^2}}\)

\(=5xy.\dfrac{\sqrt{(5x)^2}}{\sqrt{(y^3)^2}}=5xy.\dfrac{|5x|}{|y^3|}\)

Vì \(x<0\) nên \(|5x|=-5x\) 

Vì \(y>0 \Rightarrow y^3 >0 \Rightarrow |y^3|=y^3\).

\( \Rightarrow 5xy.\dfrac{|5x|}{|y^3|}=5xy.\dfrac{-5x}{y^3}=\dfrac{5xy.(-5x)}{y^3}\)

\(=\dfrac{[5.(-5)].(x.x).y}{y^2.y}=\dfrac{-25x^2}{y^2}\)

Vậy \(5xy.\sqrt{\dfrac{25x^{2}}{y^{6}}}=\dfrac{-25x^2}{y^2}\).

d) 

Ta có:

\(0,2x^{3}y^{3}.\sqrt{\dfrac{16}{x^{4}y^{8}}}=0,2x^3y^3.\dfrac{\sqrt{16}}{\sqrt{x^4y^8}}\)

\(=0,2x^3y^3\dfrac{\sqrt{4^2}}{\sqrt{(x^2)^2.(y^4)^2}}\)

\(=0,2x^3y^3.\dfrac{\sqrt{4^2}}{\sqrt{(x^2)^2}.\sqrt{(y^4)^2}}=0,2x^3y^3.\dfrac{4}{|x^2|.|y^4|}\).

Vì \(x \ne 0,\ y \ne 0\)  nên  \( x^2 > 0\)  và \(y^4 > 0\)

\(\Rightarrow |x^2| =x^2\)  và \(|y^4|=y^4\).

\( \Rightarrow 0,2x^3y^3.\dfrac{4}{|x^2|.|y^4|}=0,2x^3y^3.\dfrac{4}{x^2y^4}\)

\(=\dfrac{0,2x^3y^3.4}{x^2y^4}\)

\(=\dfrac{0,8x}{y}.\) 

Vậy \(0,2x^{3}y^{3}.\sqrt{\dfrac{16}{x^{4}y^{8}}}=\dfrac{0,8x}{y}\). 

Bài 31 trang 19 SGK Toán lớp 9 tập 1

Câu hỏi:

a) So sánh \( \sqrt{25 - 16}\) và \(\sqrt {25}  - \sqrt {16}\)

b) Chứng minh rằng: với \(a > b >0\) thì \(\sqrt a  - \sqrt b  < \sqrt {a - b} \)

Phương pháp: 

+) Định lí so sánh hai căn bậc hai số học của hai số không âm:

\( a< b \Leftrightarrow \sqrt a < \sqrt b\).

+) \( \sqrt{ a^2} = a\),  với \( a \ge 0\). 

+) Sử dụng kết quả bài 26 trang 16 SGK toán 9 tập 1: Với hai số dương \(a,b\) ta có: \(\sqrt {a + b}  < \sqrt a  + \sqrt b \)

Lời giải: 

a) 

Ta có:

+) \( \sqrt {25 - 16} = \sqrt 9 =\sqrt{3^2}= 3.\)  
+) \( \sqrt {25} - \sqrt {16} \)\(= \sqrt{5^2}-\sqrt{4^2}\)\(=5 - 4 = 1 \).

Vì \(3>1 \Leftrightarrow \sqrt {25 - 16}>\sqrt {25} - \sqrt {16} \).

Vậy \(\sqrt {25 - 16}  > \sqrt {25}  - \sqrt {16} \)

b) 

Bài ra cho \(a > b > 0\) nên \(\sqrt a ,\sqrt b \) và \(\sqrt {a - b} \) đều xác định và dương.

Ta sẽ so sánh \(\sqrt a \) với \(\sqrt {a - b}  + \sqrt b \) 

Theo kết quả bài 26 trang 16 SGK toán 9 tập 1, với hai số dương \(a-b\) và \(b,\) ta sẽ có:

\(\sqrt {a - b}  + \sqrt b  > \sqrt {a - b + b} \) 

Suy ra: 

\(\sqrt {a - b}  + \sqrt b  > \sqrt a  \Leftrightarrow \sqrt {a - b}  > \sqrt a  - \sqrt b \)

Vậy \(\sqrt a  - \sqrt b  < \sqrt {a - b} \) với \(a > b > 0.\) 

Cách khác 1: 

Với \(a > b > 0\) ta có \(\left\{ \begin{array}{l}\sqrt a  > \sqrt b \\a - b > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\sqrt a  - \sqrt b  > 0\\\sqrt {a - b}  > 0\end{array} \right.\) 

Xét \(\sqrt a  - \sqrt b  < \sqrt {a - b} \) , bình phương hai vế ta được \({\left( {\sqrt a  - \sqrt b } \right)^2} < {\left( {\sqrt {a - b} } \right)^2} \)\(\Leftrightarrow {\left( {\sqrt a } \right)^2} - 2.\sqrt a .\sqrt b  + {\left( {\sqrt b } \right)^2} < a - b\)

\( \Leftrightarrow a - 2\sqrt {ab}  + b < a - b \)\(\Leftrightarrow 2b - 2\sqrt {ab}  < 0\)

\( \Leftrightarrow 2\sqrt b \left( {\sqrt b  - \sqrt a } \right) < 0\)  luôn đúng vì  \(\left\{ \begin{array}{l}\sqrt b  > 0\\\sqrt b  - \sqrt a  < 0\,\left( {do\,0 < b < a} \right)\end{array} \right.\)

Vậy \(\sqrt a  - \sqrt b  < \sqrt {a - b} \) với \(a > b > 0.\)

Cách khác 2:

Bài ra cho \(a > b > 0\) nên \(\sqrt a ,\sqrt b \) và \(\sqrt {a - b} \) đều xác định và dương.

Ta sẽ so sánh \(\sqrt a \) với \(\sqrt {a - b}  + \sqrt b \)

Ta có \(\sqrt {a - b}  + \sqrt b \) là số dương và

\({\left( {\sqrt {a - b}  + \sqrt b } \right)^2} \)\(= a - b + 2\sqrt {b\left( {a - b} \right)}  + b \)\(= a + 2\sqrt {b\left( {a - b} \right)} \) 

Rõ ràng  \(2\sqrt {b(a - b)}  > 0\) nên \({\left( {\sqrt {a - b}  + \sqrt b } \right)^2} > a\)   (1)

Ta có \(\sqrt a \) là số không âm và \({\left( {\sqrt a } \right)^2} = a\)  (2)

Từ (1) và (2) suy ra

\({\left( {\sqrt {a - b}  + \sqrt b } \right)^2} > {\left( {\sqrt a } \right)^2}\)      (3)

Từ (3) theo định lí so sánh các căn bậc hai số học, ta suy ra

\(\sqrt {{{\left( {\sqrt {a - b}  + \sqrt b } \right)}^2}}  > \sqrt {{{\left( {\sqrt a } \right)}^2}} \)

Hay \(\left| {\sqrt {a - b}  + \sqrt b } \right| > \left| {\sqrt a } \right|\)

Hay \(\sqrt {a - b}  + \sqrt b  > \sqrt a \)

Từ kết quả \(\sqrt a  < \sqrt {a - b}  + \sqrt b \), ta có \(\sqrt a  - \sqrt b  < \sqrt {a - b} \)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan