Bài 29 trang 83 SGK Toán lớp 8 tập 1
Câu hỏi:
Dựng \(∆ABC\) vuông tại \(A\), biết cạnh huyền \(BC = 4\,cm\), góc nhọn \(\widehat{B}={65^0}\)
Phương pháp:
Dựng \(∆ABC\) vuông tại \(A\), biết cạnh huyền \(BC = a\,cm\), góc nhọn \(\widehat{B}={x^0}\)
Cách dựng:
- Dựng đoạn thẳng \(BC=a\,cm\)
- Dựng \(\widehat {CBx} = {x^o}\)
- Dựng \(CA\bot Bx\)
Lời giải:
a) Phân tích
Giả sử dựng được ΔABC thỏa mãn yêu cầu đề bài.
Đoạn thẳng BC dựng được vì đã biết độ dài.
Khi đó điểm A là giao điểm của:
+ Tia Bx tạo với đoạn thẳng BC góc 65º
+ Đường thẳng qua C và vuông góc với tia Bx vừa dựng.
b) Cách dựng:
- Dựng đoạn thẳng BC = 4cm.
- Dựng tia Bx tạo với BC một góc 65º.
- Dựng đường thẳng a qua C và vuông góc với Bx.
- Bx cắt a tại A.
ΔABC là tam giác cần dựng.
c) Chứng minh: ΔABC vừa dựng vuông tại A, góc B = 65º và BC = 4cm.
d) Biện luận: Ta luôn dựng được một tam giác thỏa mãn điều kiện đề bài.
Bài 30 trang 83 SGK Toán 8 tập 1
Câu hỏi:
Dựng tam giác \(ABC\) vuông tại \(B\), biết cạnh huyền \(AC = 4\,cm\), cạnh góc vuông \(BC = 2\,cm.\)
Phương pháp:
Dựng tam giác \(ABC\) vuông tại \(B\), biết cạnh huyền \(AC = b\,cm\), cạnh góc vuông \(BC = a\,cm.\)
Cách dựng:
- Dựng \(\widehat {xBy} = {90^0}\). Trên tia \(Bx\) lấy điểm \(C\) sao cho \(BC = a\,cm.\)
- Dựng cung tròn \((C; b\,cm)\) và cung tròn này cắt tia \(By\) tại \(A.\)
- Nối \(A\) với \(C\) ta được \(∆ABC\) là tam giác cần dựng.
Lời giải:
a) Phân tích:
Giả sử dựng được ΔABC thỏa mãn yêu cầu.
Ta dựng được đoạn BC vì biết BC = 2cm.
Khi đó điểm A là giao điểm của:
+ Tia Bx vuông góc với BC
+ Cung tròn tâm C bán kính 4cm.
b) Cách dựng:
+ Dựng đoạn thẳng BC = 2cm.
+ Dựng tia Bx vuông góc với cạnh BC.
+ Dựng cung tròn tâm C, bán kính 4cm. Cung tròn cắt tia Bx tại A.
Kẻ AC ta được ΔABC cần dựng.
c) Chứng minh
ΔABC có góc B = 90º, BC = 2cm.
A thuộc cung tròn tâm C bán kính 4cm nên AC = 4cm.
Vậy ΔABC thỏa mãn yêu cầu đề bài
d) Biện luận: Ta luôn dựng được một hình thang thỏa mãn điều kiện của đề bài.
Bài 31 trang 83 SGK Toán 8 tập 1
Câu hỏi:
Dựng hình thang \(ABCD\; (AB // CD)\), biết \(AB = AD = 2\,cm,\) \( AC = DC = 4\,cm.\)
Phương pháp:
Áp dụng phương pháp dựng tam giác, hình thang.
Lời giải:
a) Phân tích :
Giả sử dựng được hình thang ABCD thỏa mãn yêu cầu đề bài.
Tam giác ADC dựng được vì biết ba cạnh của tam giác.
Điểm B phải thỏa mãn hai điều kiện :
+ B nằm trên tia Ax song song với CD
+ B cách A một đoạn 2cm.
b) Cách dựng:
+ Dựng tam giác ADC có AD = 2cm, AC = 4cm, CD = 4cm.
+ Dựng tia Ax song song với CD và nằm trên cùng một nửa mặt phẳng chứa điểm C bờ là đường thẳng AD.
+ Trên tia Ax lấy điểm B sao cho AB = 2cm.
Kẻ BC ta được hình thang ABCD cần dựng.
c) Chứng minh
Tứ giác ABCD là hình thang vì AB // CD.
Hình thang ABCD có AB = AD = 2cm, AC = BC = 4cm thỏa mãn yêu cầu đề bài
d) Biện luận: Ta luôn dựng được một hình thang thỏa mãn yêu cầu của đề bài.
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục