Hình chóp tam giác S.ABC có đáy là tam giác đều ABC cạnh 7a, có cạnh SC vuông góc với mặt phẳng đáy (ABC) và SC = 7a.
a) Tính góc giữa SA và BC.
b) Tính khoảng cách giữa hai đường thẳng chéo nhau SA và BC.
Giải:
a) Gọi H là trung điểm của đoạn BC. Qua A vẽ AD song song với BC và bằng đoạn HC thì góc giữa BC và SA là góc \(\widehat {SA{\rm{D}}}\). Theo định lí ba đường vuông góc, ta có SD⊥DA và khi đó:
\(\cos \widehat {SAD} = {{AD} \over {SA}} = {{HC} \over {SA}} = {{{{7a} \over 2}} \over {7a\sqrt 2 }} = {{\sqrt 2 } \over 4}\)
Vậy góc giữa BC và SA được xác định sao cho \(\cos \widehat {SAD} = {{\sqrt 2 } \over 4}\)
Vì \(BC\parallel A{\rm{D}}\) nên BC song song với mặt phẳng (SAD). Do đó khoảng cách giữa SA và BC chính là khoảng cách từ đường thẳng BC đến mặt phẳng (SAD).
Ta kẻ CK⊥SD, suy ra CK⊥(SAD), do đó CK chính là khoảng cách nói trên. Xét tam giác vuông SCD với đường cao CK xuất phát từ đỉnh góc vuông C ta có hệ thức:
\({1 \over {C{K^2}}} = {1 \over {S{C^2}}} + {1 \over {C{D^2}}} \Rightarrow {1 \over {C{K^2}}} = {1 \over {{{\left( {7{\rm{a}}} \right)}^2}}} + {1 \over {{{\left( {{{7{\rm{a}}\sqrt 3 } \over 2}} \right)}^2}}}\)
(vì \(CD = AH = {{BC\sqrt 3 } \over 2} = {{7{\rm{a}}\sqrt 3 } \over 2}\))
Do đó \({1 \over {C{K^2}}} = {1 \over {49{{\rm{a}}^2}}} + {4 \over {3.49{{\rm{a}}^2}}} = {{3 + 4} \over {3.49{{\rm{a}}^2}}} = {1 \over {21{{\rm{a}}^2}}}\)
Vậy \(CK = a\sqrt {21} \)
Chú ý. Nếu kẻ \(KI\parallel A{\rm{D}}\) và kẻ \(IJ\parallel CK\) thì IJ là đoạn vuông góc chung của SA và BC.
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục