Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 35 trang 123 Sách bài tập hình học lớp 12 nâng cao

Bình chọn:
4.9 trên 7 phiếu

viết phương trình mặt phẳng :

Cho điểm \({M_0}({x_0},{y_0},{z_0})\) với \({x_0},{y_0},{z_0} \ne 0.\) Trong mỗi trường hợp sau, viết phương trình mặt phẳng :

a) Đi qua diểm M0 và song song với một trong các mặt phẳng tọa độ (Oxy), (Oyz), (Oxz).

b) Đi qua các hình chiếu của điểm M0 trên các trục tọa độ Ox, Oy, Oz.

c) Đi qua điểm M0 và lần lượt chứa các trục tọa độ Ox, Oy, Oz.

Giải

a) Mặt phẳng qua \({M_0}({x_0},{y_0},{z_0})\) và song song với mặt phẳng mp(Oxy) có vec tơ pháp tuyến là \(\overrightarrow k  = (0;0;1)\) nên có phương trình là \(z - {z_0} = 0.\)

Phương trình mặt phẳng qua \({M_0}({x_0},{y_0},{z_0})\) và song song với mp(Oxz) là :

\(y - {y_0} = 0\).

Phương trình mặt phẳng qua \({M_0}({x_0},{y_0},{z_0})\) và song song với mp(Oyz) là :

\(x - {x_0} = 0\)

b) Gọi \({M_1},{M_2},{M_3}.\) lần lượt là hình chiếu của điểm M0 trên các trục Ox, Oy, Oz. Khi đó : \({M_1} = ({x_0};0;0),{M_2} = (0;{y_0};0),{M_3} = (0;0;{z_0})\)

Vậy phương trình mặt phẳng \(({M_1}{M_1}{M_3})\) là :

\({x \over {{x_0}}} + {y \over {{y_0}}} + {z \over {{z_0}}} = 1.\)

c) Gọi \(({P_x})\) là mặt phẳng chứ điêm M0 và trục Ox. Khi đó vec tơ pháp tuyến của nó là :

\(\overrightarrow {{n_x}}  = \left[ {\overrightarrow {O{M_0}} ,\overrightarrow i } \right] = \left( {\left| \matrix{  {y_0} \hfill \cr  0 \hfill \cr}  \right.\left. \matrix{  {z_0} \hfill \cr  0 \hfill \cr}  \right|;\left| \matrix{  {z_0} \hfill \cr  0 \hfill \cr}  \right.\left. \matrix{  {x_0} \hfill \cr  1 \hfill \cr}  \right|;\left| \matrix{  {x_0} \hfill \cr  1 \hfill \cr}  \right.\left. \matrix{  {y_0} \hfill \cr  0 \hfill \cr}  \right|} \right) \)

       \(= (0;{z_0}; - {y_0})\)

Vậy \(({P_x})\) có phương trình là \({z_0}y - {y_0}z = 0.\)

Tương tự , phương trình mặt phẳng chứa điểm M0 và trục Oy là:

\({z_0}x - {x_0}z = 0.\)

Phương trình mặt phẳng chứa điểm M0 và trục Oz là: 

\({y_0}x - {x_0}y = 0.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan