Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 36 trang 10 Sách bài tập Hình học lớp 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Khối chóp

Khối chóp \(S.ABCD\)có \(SA \bot \left( {ABC} \right)\); đáy là tam giác ABC cân tại A, độ dài trung tuyến AD bằng a, cạnh bên SB tạo với đáy một góc \( \alpha  \) và tạo với mặt \(\left( {SAD} \right)\) góc \(\beta \). Tính thể tích khối chóp.

Giải

(h.20)

 

AB là hình chiếu của SB trên \(mp\left( {ABC} \right)\) nên \(\widehat {SBA} = \alpha \)  Dễ thấy \(BD \bot \left( {SAD} \right)\) nên hình chiếu của SB trên \(mp\left( {SAD} \right)\) là SD \( \Rightarrow \)  \(\widehat {BSD} = \beta \)

Do SAB SDB là các tam giác vuông nên ta có \(SB = {{BD} \over {\sin \beta }},SB = {{AB} \over {\cos \alpha }},\) suy ra

\(\eqalign{   &{{A{B^2}} \over {{{\cos }^2}\alpha }} = {{B{D^2}} \over {{{\sin }^2}\beta }} = {{A{B^2} - B{D^2}} \over {{{\cos }^2}\alpha  - {{\sin }^2}\beta }} \cr&= {{{a^2}} \over {{{\cos }^2}\alpha  - {{\sin }^2}\beta }}  \cr  &  \Rightarrow BD = {{a\sin \beta } \over {\sqrt {{{\cos }^2}\alpha  - {{\sin }^2}\beta } }}, \cr} \)

\(\eqalign{  & SD = BD\cot \beta  = {{a\cos \beta } \over {\sqrt {{\rm{co}}{{\rm{s}}^2}\alpha  - {{\sin }^2}\beta } }},  \cr  & SA = \sqrt {S{D^2} - A{D^2}}  = {{a\sin \alpha } \over {\sqrt {{\rm{co}}{{\rm{s}}^2}\alpha  - {{\sin }^2}\beta } }}.  \cr  &  \cr} \)

Vậy :

\(\eqalign{  & {V_{S.ABC}} = {1 \over 3}{S_{ABC}}.SA  \cr  &  = {1 \over 3}.a.{{a\sin \beta } \over {\sqrt {{\rm{co}}{{\rm{s}}^2}\alpha  - {{\sin }^2}\beta } }}.{{a\sin \alpha } \over {\sqrt {{\rm{co}}{{\rm{s}}^2}\alpha  - {{\sin }^2}\beta } }}  \cr  &  = {{{a^3}\sin \alpha .\sin \beta } \over {3\left( {{\rm{co}}{{\rm{s}}^2}\alpha  - {{\sin }^2}\beta } \right)}}. \cr} \)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan