Bài 4 trang 11 SGK Toán lớp 9 tập 2
Câu hỏi:
Không cần vẽ hình, hãy cho biết số nghiệm của mỗi hệ phương trình sau đây và giải thích vì sao:
a) \(\left\{\begin{matrix} y = 3 - 2x & & \\ y = 3x - 1 & & \end{matrix}\right.\);
b) \(\left\{\begin{matrix} y = -\dfrac{1}{2}x+ 3 & & \\ y = -\dfrac{1}{2}x + 1 & & \end{matrix}\right.\);
c) \(\left\{\begin{matrix} 2y = -3x & & \\ 3y = 2x & & \end{matrix}\right.\);
d) \(\left\{\begin{matrix} 3x - y = 3 & & \\ x - \dfrac{1}{3}y = 1 & & \end{matrix}\right.\)
Lời giải:
a) Ta có:
\(\left\{\begin{matrix} y = 3 - 2x & & \\ y = 3x - 1 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = -2x + 3 \, (d) & & \\ y = 3x - 1 \, (d') & & \end{matrix}\right.\)
Ta có \(a = -2, a' = 3\) nên \(a ≠ a'\).
Do đó hai đường thẳng \( (d)\) và \((d')\) cắt nhau nên hệ phương trình đã cho có một nghiệm duy nhất.
b) Ta có:
\(\left\{\begin{matrix} y = -\dfrac{1}{2}x+ 3 \, (d) & & \\ y = -\dfrac{1}{2}x + 1 \, (d') & & \end{matrix}\right.\)
Ta có \(a = -\dfrac{1}{2},b = 3 \) và \(a' = -\dfrac{1}{2}, b' = 1\) nên \(a = a', b ≠ b'\).
Do đó hai đường thẳng \( (d)\) và \((d')\) song song nên hệ phương trình đã cho vô nghiệm.
c) Ta có:
\(\left\{\begin{matrix} 2y = -3x & & \\ 3y = 2x & & \end{matrix}\right.\)⇔ \(\left\{\begin{matrix} y = -\dfrac{3}{2}x \, (d) & & \\ y = \dfrac{2}{3}x\, (d') & & \end{matrix}\right.\)
Ta có \(a = -\dfrac{3}{2}, a' = \dfrac{2}{3}\) nên \(a ≠ a'\)
Do đó hai đường thẳng \( (d)\) và \((d')\) cắt nhau nên hệ phương trình đã cho có một nghiệm duy nhất.
d) Ta có:
\(\left\{\begin{matrix} 3x - y = 3 & & \\ x - \dfrac{1}{3}y = 1 & & \end{matrix}\right.\) ⇔\(\left\{\begin{matrix} y = 3x - 3 & & \\ \dfrac{1}{3}y = x - 1 & & \end{matrix}\right.\) ⇔ \(\left\{\begin{matrix} y = 3x - 3\, (d) & & \\ y = 3x - 3 \, (d')& & \end{matrix}\right.\)
Ta có \(a = 3,\ b = -3 \) và \(a' = 3,\ b' = -3\) nên \(a = a',\ b = b'\).
Do đó hai đường thẳng \( (d)\) và \((d')\) trùng nhau nên hệ phương trình đã cho có vô số nghiệm.
Bài 5 trang 11 SGK Toán lớp 9 tập 2
Câu hỏi:
Đoán nhận số nghiệm của hệ phương trình sau bằng hình học:
a) \( \left\{ \matrix{2{\rm{x}} - y = 1 \hfill \cr x - 2y = - 1 \hfill \cr} \right. \); b) \( \left\{ \matrix{2{\rm{x + }}y = 4 \hfill \cr - x + y = 1 \hfill \cr} \right. \)
Lời giải:
a) Ta có:
\(\left\{ \matrix{
2x - y = 1 \hfill \cr
x - 2y = - 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = 2x - 1 \ (d)\hfill \cr
y = \dfrac{1}{2}x + \dfrac{1}{2} \ (d') \hfill \cr} \right.\)
+) Vẽ \((d)\): \(y=2x-1\)
Cho \(x = 0 \Rightarrow y = -1\), ta được \(A(0; -1)\).
Cho \(y = 0 \Rightarrow x = \dfrac{1}{2}\), ta được \(B{\left(\dfrac{1}{2}; 0 \right)}\).
Đường thẳng (d) là đường thẳng đi qua hai điểm \(A,\ B\).
+) Vẽ \((d')\): \(y=\dfrac{1}{2}x+\dfrac{1}{2}\)
Cho \(x = 0 \Rightarrow y = \dfrac{1}{2}\), ta được \(C {\left(0; \dfrac{1}{2} \right)}\).
Cho \(y = 0 \Rightarrow x = -1\), ta được \(D = (-1; 0)\).
Đường thẳng (d') là đường thẳng đi qua hai điểm \(C,\ D\).
+) Quan sát hình vẽ, ta thấy hai đường thẳng cắt nhau tại điểm có tọa độ \(M( 1, 1)\).
Thay \(x = 1, y = 1\) vào các phương trình của hệ ta được:
\(\left\{ \begin{array}{l}2x - y = 1\\x - 2y = - 1\end{array} \right.\)
\(\Rightarrow\left\{ \begin{array}{l}2.1 - 1 = 1\\1 - 2.1 = - 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}1 = 1\\ - 1 = - 1\end{array} \right.\) (luôn đúng)
Vậy hệ phương trình có một nghiệm \((x; y) = (1; 1)\).
b) Ta có:
\(\left\{ \matrix{
2x + y = 4 \hfill \cr
- x + y = 1 \hfill \cr} \right. \Leftrightarrow \left\{ \matrix{
y = - 2x + 4 \ (d) \hfill \cr
y = x + 1 \ (d') \hfill \cr} \right.\)
+) Vẽ \((d)\): \(y=-2x+4\)
Cho \(x = 0 \Rightarrow y = 4\), ta được \(A(0; 4)\).
Cho \(y = 0 \Rightarrow x = 2\), ta được \(B(2; 0)\).
Đường thẳng (d) là đường thẳng đi qua hai điểm \(A,\ B\).
Vẽ \((d')\): \(y=x+1\)
Cho \(x = 0 \Rightarrow y = 1\), ta được \(C(0; 1)\).
Cho \(y = 0 \Rightarrow x = -1\), ta được \(D(-1; 0)\).
Đường thẳng (d') là đường thẳng đi qua hai điểm \(C,\ D\).
Bài 6 trang 11 SGK Toán lớp 9 tập 2
Câu hỏi:
Đố: Bạn Nga nhận xét: Hai hệ phương trình bậc nhất hai ẩn vô nghiệm thì luôn tương đương với nhau. Bạn Phương khẳng định: Hai hệ phương trình bậc nhất hai ẩn cùng có vô số nghiệm thì cũng luôn tương đương với nhau.
Theo em, các ý kiến đó đúng hay sai ? Vì sao ? (có thể cho một ví dụ hoặc minh họa bằng đồ thị).
Lời giải:
Bạn Nga đã nhận xét đúng vì hai hệ phương trình cùng vô nghiệm có nghĩa là chúng cùng có tập nghiệm bằng \(S=\phi \) (rỗng).
Bạn Phương nhân xét sai. Chẳng hạn, hai hệ phương trình:
\((I)\) \(\left\{\begin{matrix} y = x & & \\ y = x & & \end{matrix}\right.\) và \((II)\) \(\left\{\begin{matrix} y = -x & & \\ y = -x & & \end{matrix}\right.\)
Hệ (I) và hệ (II) đều có vô số nghiệm nhưng tập nghiệm của hệ \((I)\) được biểu diễn bởi đường thẳng \(y = x\), còn tập nghiệm của phương trình \((II)\) được biểu diễn bởi đường thẳng \(y = -x\). Hai đường thẳng này là khác nhau nên hai hệ đang xét không tương đương (vì không có cùng tập nghiệm).
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục