Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 4.22, 4.23, 4.24, 4.25, 4.26, 4.27, 4.28 trang 58, 59 SBT Toán 10 tập 1 Kết nối tri thức

Bình chọn:
3 trên 4 phiếu

Giải bài 10 trang 58, 59 SBT Toán lớp 10 tập 1 Kết nối tri thức với cuộc sống. Bài 4.25: Trong mặt phẳng tọa độ (Oxy) cho hai điểm M(-3;2)) và N(2;7).

Bài 4.22 trang 58 SBT Toán lớp 10 tập 1 - Kết nối tri thức

Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(M(4;0),\,\,N(5;2)\) và \(P(2;3).\) Tìm tọa độ các đỉnh của tam giác \(ABC,\) biết \(M,\,\,N,\,\,P\) theo thứ tự là trung điểm các cạnh \(BC,\,\,CA,\,\,AB.\)

Lời giải:

Ta có: \(MN,\,\,NP,\,\,MP\) là đường trung bình của \(\Delta ABC\)

\( \Rightarrow \) \(MN\)//\(AB\), \(NP\)//\(BC\), \(MP\)//\(AC\).

\( \Rightarrow \) \(APMN\), \(BPNM\), \(CMPN\) là hình bình hành

Xét hình bình hành \(APMN\) có:

\(\begin{array}{l}\overrightarrow {OA}  = \overrightarrow {OP}  + \overrightarrow {ON}  - \overrightarrow {OM} \\ \Rightarrow \overrightarrow {OA}  = (2;3) + (5;2) - (4;0) = (3;5)\end{array}\)

\( \Rightarrow \) Tọa độ điểm \(A\) là: \(A(3;5).\)

Xét hình bình hành \(BPNM\) có:

\(\begin{array}{l}\overrightarrow {OB}  = \overrightarrow {OP}  + \overrightarrow {OM}  - \overrightarrow {ON} \\ \Rightarrow \overrightarrow {OB}  = (2;3) + (4;0) - (5;2) = (1;1)\end{array}\)

\( \Rightarrow \) Tọa độ điểm \(B\) là: \(B(1;1).\)

Xét hình bình hành \(CMPN\) có:

\(\begin{array}{l}\overrightarrow {OC}  = \overrightarrow {ON}  + \overrightarrow {OM}  - \overrightarrow {OP} \\ \Rightarrow \overrightarrow {OC}  = (5;2) + (4;0) - (2;3) = (7; - 1)\end{array}\)

\( \Rightarrow \) Tọa độ điểm \(C\) là: \(C(7; - 1).\)

Bài 4.23 trang 58 SBT Toán lớp 10 tập 1 - Kết nối tri thức

Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A(2; - 1),\,\,B(1;4)\) và \(C(7;0).\)

a)  Tính độ dài các đoạn thẳng \(AB,\,\,BC\) và \(CA.\) Từ đó suy ra tam giác \(ABC\) là một tam giác vuông cân.

b) Tìm tọa độ của điểm \(D\) sao cho tứ giác \(ABDC\) là một hình vuông.

Lời giải:

a) Ta có: \(AB = \left| {\overrightarrow {AB} } \right| = \sqrt {{{\left( {1 - 2} \right)}^2} + {{\left( {4 + 1} \right)}^2}}  = \sqrt {26} \)

\(AC = \left| {\overrightarrow {AC} } \right| = \sqrt {{{\left( {7 - 2} \right)}^2} + {{\left( {0 + 1} \right)}^2}}  = \sqrt {26} \)

\(BC = \left| {\overrightarrow {BC} } \right| = \sqrt {{{\left( {7 - 1} \right)}^2} + {{\left( {0 - 4} \right)}^2}}  = \sqrt {52}  = 2\sqrt {13} \)

Xét \(\Delta ABC\) có: \(A{B^2} + A{C^2} = 26 + 26 = 52 = B{C^2}\)

\( \Rightarrow \) \(\Delta ABC\) vuông tại \(A\)

mặt khác \(AB = AC = \sqrt {26} \)

nên \(\Delta ABC\) vuông cân tại \(A\)

b) Gọi điểm \(D\) có tọa độ là: \(D(x;y).\)

Xét hình vuông \(ABDC\) có:

\(\begin{array}{l}\overrightarrow {AB}  = \overrightarrow {CD} \\ \Leftrightarrow \,\,(1 - 2;4 + 1) = (x - 7;y - 0)\\ \Leftrightarrow \,\,( - 1;5) = (x - 7;y)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x - 7 =  - 1}\\{y = 5}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 6}\\{y = 5}\end{array}} \right.\end{array}\)

Vậy \(D(6;5)\)

Bài 4.24 trang 58 SBT Toán lớp 10 tập 1 - Kết nối tri thức

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M( - 2;1)\) và \(N(4;5).\)

a) Tìm tọa độ của điểm \(P\) thuộc \(Ox\) sao cho \(PM = PN.\)

b) Tìm tọa độ của điểm \(Q\) sao cho \(\overrightarrow {MQ}  = 2\overrightarrow {PN} .\)

c) Tìm tọa độ của điểm \(R\) thỏa mãn \(\overrightarrow {RM}  + 2\overrightarrow {RN}  = \overrightarrow 0 .\) Từ đó suy ra \(P,\,\,Q,\,\,R\) thẳng hàng.

Lời giải:

a)  Vì điểm \(P\) thuộc \(Ox\) nên tọa độ điểm \(P\) là: \(P(x;0)\)

Ta có: \(PM = PN\,\, \Leftrightarrow \,\,\left| {\overrightarrow {PM} } \right| = \left| {\overrightarrow {PN} } \right|\)

        \(\begin{array}{l} \Leftrightarrow \,\,\sqrt {{{\left( {x + 2} \right)}^2} + {{\left( {0 - 1} \right)}^2}}  = \sqrt {{{\left( {x - 4} \right)}^2} + {{\left( {0 - 5} \right)}^2}} \\ \Leftrightarrow \,\,\sqrt {{x^2} + 4x + 4 + 1}  = \sqrt {{x^2} - 8x + 16 + 25} \\ \Leftrightarrow \,\,{x^2} + 4x + 5 = {x^2} - 8x + 41\\ \Leftrightarrow \,\,12x = 36\,\, \Leftrightarrow \,\,x = 3\end{array}\)

Vậy \(P(3;0)\)

b) Gọi tọa độ điểm \(Q\) là: \(Q(x;y)\)

Ta có: \(\overrightarrow {MQ}  = 2\overrightarrow {PN} \,\, \Leftrightarrow \,\,(x + 2;y - 1) = 2(4 - 3;5 - 0)\)

 \(\begin{array}{l} \Leftrightarrow \,\,\left( {x + 2;y - 1} \right) = (2;10)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x + 2 = 2}\\{y - 1 = 10}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 0}\\{y = 11}\end{array}} \right.} \right.\end{array}\)

Vậy \(Q(0;11)\)

c) Gọi tọa độ điểm \(R\) là: \(R(x;y)\)

Ta có: \(\overrightarrow {RM}  + 2\overrightarrow {RN}  = \overrightarrow 0 \,\, \Leftrightarrow \,\,\left( { - 2 - x;1 - y} \right) + 2\left( {4 - x;5 - y} \right) = \left( {0;0} \right)\)

 \(\begin{array}{l} \Leftrightarrow \,\,\left( { - 2 - x;1 - y} \right) + \left( {8 - 2x;10 - 2y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left( {6 - 3x;11 - 3y} \right) = \left( {0;0} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{6 - 3x = 0}\\{11 - 3y = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 2}\\{y = \frac{{11}}{3}}\end{array}} \right.} \right.\end{array}\)

Vậy \(R\left( {2;\frac{{11}}{3}} \right)\)

Ta có: \(\overrightarrow {PQ}  = \left( { - 3;11} \right),\,\,\overrightarrow {PR}  = \left( { - 1;\frac{{11}}{3}} \right)\) \( \Rightarrow \) \(\overrightarrow {PQ} \) và \(\overrightarrow {PR} \) cùng phương

\( \Rightarrow \) \(P,\,\,Q,\,\,R\) thẳng hàng

Bài 4.25 trang 59 SBT Toán lớp 10 tập 1 - Kết nối tri thức

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(M( - 3;2)\) và \(N(2;7).\)

a) Tìm tọa độ của điểm \(P\) thuộc trục tung sao cho \(M,\,\,N,\,\,P\) thẳng hàng.

b) Tìm tọa độ của điểm \(Q\) đối xứng với \(N\) qua \(Oy.\)

c) Tìm tọa độ của điểm \(R\) đối xứng với \(M\) qua trục hoành.

Lời giải:

a) Vì \(P\) thuộc trục tung nên tọa độ điểm \(P\) là \(P(0;y)\)

Ta có: \(\overrightarrow {MN}  = (5;5)\), \(\overrightarrow {MP}  = (3;y - 2)\)

Để ba điểm \(M,\,\,N,\,\,P\) thẳng hàng

\( \Leftrightarrow \) hai vectơ \(\overrightarrow {MN} \) và \(\overrightarrow {MP} \) cùng phương

\( \Leftrightarrow \) \(5\left( {y - 2} \right) - 5.3 = 0\)

\( \Leftrightarrow \) \(5y - 10 - 15 = 0\)

\( \Leftrightarrow \) \(5y = 25\)

\( \Leftrightarrow \) \(y = 5\)

Vậy \(P(0;5).\)

b) Tọa độ điểm \(Q\) đối xứng với \(N\) qua \(Oy\) là: \(Q( - 2;7).\)

c) Tọa độ của điểm \(R\) đối xứng với \(M\) qua trục hoành là: \(R( - 3; - 2).\)

Bài 4.26 trang 59 SBT Toán lớp 10 tập 1 - Kết nối tri thức

Trong mặt phẳng tọa độ \(Oxy\) cho hai điểm \(C(1;6)\) và \(D(11;2).\)

a) Tìm tọa độ của điểm \(E\) thuộc trục tung sao cho vectơ \(\overrightarrow {EC}  + \overrightarrow {ED} \) có độ dài ngắn nhất.

b) Tìm tọa độ của điểm \(F\) thuộc trục hoành sao cho \(\left| {2\overrightarrow {FC}  + 3\overrightarrow {FD} } \right|\) đạt giá trị nhỏ nhất.

c) Tìm tập hợp các điểm \(M\) sao cho \(\left| {\overrightarrow {MC}  + \overrightarrow {MD} } \right| = CD.\)

Lời giải:

a) Vì điểm \(E\) thuộc trục tung nên tọa độ điểm \(E\) là: \(E(0;y).\)

Ta có: \(\overrightarrow {EC}  = (1;6 - y)\) và \(\overrightarrow {ED}  = (11;2 - y).\)

Khi đó: \(\overrightarrow {EC}  + \overrightarrow {ED}  = (1;6 - y) + (11;2 - y) = (12;8 - 2y)\)

\( \Rightarrow \) \(\left| {\overrightarrow {EC}  + \overrightarrow {ED} } \right| = \sqrt {{{12}^2} + {{\left( {8 - 2y} \right)}^2}}  = \sqrt {4{{\left( {y - 4} \right)}^2} + 144} \)

Do \(4{\left( {y - 4} \right)^2} \ge 0\,\,\forall y,\) đẳng thức xảy ra khi và chỉ khi \(y = 4,\) nên \(\left| {\overrightarrow {EC}  + \overrightarrow {ED} } \right| \ge 12,\) đẳng thức xảy ra khi và chỉ khi \(y = 4.\)

Vậy \(E(0;4)\) thì \(\overrightarrow {EC}  + \overrightarrow {ED} \) có độ dài ngắn nhất.

b) Vì điểm \(F\) thuộc trục hoành nên tọa độ điểm \(F\) là \(F(x;0).\)

Ta có: \(\overrightarrow {FC}  = (1 - x;6)\) và \(\overrightarrow {FD}  = (11 - x;2).\)

Khi đó: \(2\overrightarrow {FC}  + 3\overrightarrow {FD}  = 2(1 - x;6) + 3(11 - x;2) = (35 - 5x;18).\)

\( \Rightarrow \) \(\left| {2\overrightarrow {FC}  + 3\overrightarrow {FD} } \right| = \sqrt {{{\left( {35 - 5x} \right)}^2} + {{18}^2}}  = \sqrt {25{{\left( {x - 7} \right)}^2} + {{18}^2}} \)

Do \(25{\left( {x - 7} \right)^2} \ge 0\,\,\forall x,\) đẳng thức xảy ra khi và chỉ khi \(x = 7,\) nên \(\left| {2\overrightarrow {FC}  + 3\overrightarrow {FD} } \right| \ge 18,\) đẳng thức xảy ra khi vào chỉ khi \(x = 7.\)

Vậy \(F(7;0)\) thì \(\left| {2\overrightarrow {FC}  + 3\overrightarrow {FD} } \right|\) đạt giá trị nhỏ nhất.

c) Ta có: \(CD = \left| {\overrightarrow {CD} } \right| = \sqrt {{{\left( {11 - 1} \right)}^2} + {{\left( {2 - 6} \right)}^2}}  = 2\sqrt {29} \)

Gọi \(I\) là trung điểm của \(CD\) nên \(I(6;4)\)

Ta có: \(\overrightarrow {MC}  + \overrightarrow {MD}  = 2\overrightarrow {MI} \)

Khi đó: \(\left| {\overrightarrow {MC}  + \overrightarrow {MD} } \right| = \left| {2\overrightarrow {MI} } \right| = CD = 2\sqrt {29} \,\, \Leftrightarrow \,\,2MI = 2\sqrt {29} \,\, \Leftrightarrow \,\,MI = \sqrt {29} \)

Vậy tập hợp điểm \(M\) là đường tròn tâm \(I\) bán kính \(MI = \sqrt {29} \)

Bài 4.27 trang 59 SBT Toán lớp 10 tập 1 - Kết nối tri thức

Trong mặt phẳng tọa độ \(Oxy\) cho ba điểm \(A(1;2),\,\,B(3;4)\) và \(C(2; - 1).\)

a) Chứng minh rằng \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác. Tìm tọa độ trọng tâm của tam giác đó.

b) Tìm tọa độ tâm \(I\) của đường tròn ngoại tiếp và trực tâm \(H\) của tam giác \(ABC.\)

Lời giải:

a) Ta có: \(\overrightarrow {AB}  = (2;2)\) và \(\overrightarrow {AC}  = (1; - 3)\)

Do \(\frac{2}{1} \ne \frac{2}{{ - 3}}\) nên các vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {AC} \) không cùng phương.

\( \Rightarrow \) ba điểm \(A,\,\,B,\,\,C\) là ba đỉnh của một tam giác.

Gọi \(G\) là trọng tâm của \(\Delta ABC\) nên \(\left\{ {\begin{array}{*{20}{c}}{x = \frac{{1 + 3 + 2}}{3} = 2}\\{y = \frac{{2 + 4 - 1}}{3} = \frac{5}{3}}\end{array}} \right.\)

Vậy \(G\left( {2;\frac{5}{3}} \right).\)

b) Gọi \(I(x;y)\) của đường tròn ngoại tiếp và \(H(x';y')\) là trực tâm của \(\Delta ABC.\)

Ta có: \(\left\{ {\begin{array}{*{20}{c}}{I{A^2} = I{B^2}}\\{I{A^2} = I{C^2}}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{{{\left( {x - 1} \right)}^2} + {{\left( {y - 2} \right)}^2} = {{\left( {x - 3} \right)}^2} + {{\left( {y - 4} \right)}^2}}\\{{{\left( {x - 1} \right)}^2} + {{\left( {y - 2} \right)}^2} = {{\left( {x - 2} \right)}^2} + {{\left( {y + 1} \right)}^2}}\end{array}} \right.\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x + y = 5}\\{x - 3y = 0}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = \frac{{15}}{4}}\\{y = \frac{5}{4}}\end{array}} \right.} \right.\)

Vậy \(I\left( {\frac{{15}}{4};\frac{5}{4}} \right).\)

Ta có: \(\overrightarrow {IH}  = 3\overrightarrow {IG} \) \( \Leftrightarrow \left( {x' - \frac{{15}}{4};y' - \frac{5}{4}} \right) = 3\left( {\frac{{ - 7}}{4};\frac{5}{{12}}} \right)\)

\( \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x' - \frac{{15}}{4} = \frac{{ - 21}}{4}}\\{y' - \frac{5}{4} = \frac{5}{4}}\end{array}} \right.\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x' = \frac{{ - 3}}{2}}\\{y' = \frac{5}{2}}\end{array}} \right.\)

Vậy \(H\left( {\frac{{ - 3}}{2};\frac{5}{2}} \right).\)

Bài 4.28 trang 59 SBT Toán lớp 10 tập 1 - Kết nối tri thức

Để kéo đường dây điện bằng qua một hồ hình chữ nhật \(ABCD\) với độ dài \(AB = 200\,\,m,\,\,AD = 180\,\,m,\) người ta dự định làm 4 cột điện liên tiếp cách đều, cột thứ nhất nằm bên trên bờ \(AB\) và cách đỉnh \(A\) khoảng cách 20 m, cột thứ tư nằm trên bờ \(CD\) và cách đỉnh \(C\) khoảng cách 30 m. Tính các khoảng cách từ vị trí các cột thứ hai, thứ ba đến các bờ \(AB,\,\,AD.\)

Lời giải:

Chọn hệ trục tọa độ \(Oxy\) sao cho \(A(0;0),\,\,B(200;0),\,\,C(200;180),\,\,D(0;180).\)

Gọi vị trí các cột điện là: \({C_1},\,\,{C_2},\,\,{C_3},\,\,{C_4}.\)

Ta có: \(A{C_1} = 20\,\,m\) nên \({C_1}(20;0)\) và \(C{C_4} = 30\,\,m\) nên \({C_4}(170;180).\)

Do bốn cột điện \({C_1},\,\,{C_2},\,\,{C_3},\,\,{C_4}\) được trồng liên tiếp đều nhau nên \(\overrightarrow {{C_1}{C_2}}  = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \) và \(\overrightarrow {{C_1}{C_4}}  = 3\overrightarrow {{C_3}{C_4}} \)

Gọi tọa độ điểm \({C_2}(x;y)\) và \({C_3}(x';y')\)

Ta có: \(\overrightarrow {{C_1}{C_2}}  = \frac{1}{3}\overrightarrow {{C_1}{C_4}} \,\, \Leftrightarrow \,\,(x - 20;y) = \frac{1}{3}\left( {150;180} \right)\)

   \(\begin{array}{l} \Leftrightarrow \,\,(x - 20;y) = \left( {50;60} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x - 20 = 50}\\{y = 60}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x = 70}\\{y = 60}\end{array}} \right.} \right.\end{array}\)

\( \Rightarrow \,\,{C_2}(70;60)\)

\( \Rightarrow \,\,d\left( {{C_1};AB} \right) = d\left( {{C_1};Ox} \right) = 70\) và \(d\left( {{C_1};AD} \right) = d\left( {{C_1};Oy} \right) = 60.\)

Ta có: \(\overrightarrow {{C_1}{C_4}}  = 3\overrightarrow {{C_3}{C_4}} \,\, \Leftrightarrow \,\,\left( {150;180} \right) = 3\left( {170 - x';180 - y'} \right)\)

\(\begin{array}{l} \Leftrightarrow \,\,\left( {150;180} \right) = \left( {510 - 3x';540 - 3y'} \right)\\ \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{510 - 3x' = 150}\\{540 - y' = 180}\end{array}\,\, \Leftrightarrow \,\,\left\{ {\begin{array}{*{20}{c}}{x' = 120}\\{y' = 120}\end{array}} \right.} \right.\end{array}\)

\( \Rightarrow \) \({C_3}(120;120)\)

\( \Rightarrow \) \(d\left( {{C_3};AB} \right) = d\left( {{C_3};Ox} \right) = 120\) và \(d\left( {{C_3};AD} \right) = d\left( {{C_3};Oy} \right) = 120\)

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan