Xét hình chóp tứ giác đều S.ABCD có cạnh đáy và chiều cao thay đổi. Tìm hệ thức liên hệ giữa cạnh đáy và chiều cao của hình chóp để \({{{V_1}} \over {{V_2}}}\) đạt giá trị nhỏ nhất, ở đó \({V_1},{V_2}\) lần lượt là thể tích của các hình cầu ngoại tiếp và nội tiếp hình chóp.
Giải
Gọi x là độ dài cạnh đáy, y là chiều cao của hình chóp; R, r lần lượt là bán kính mặt cầu ngoại tiếp và nội tiếp hình chóp thì dễ tính được \(R = {{{x^2} + 2{y^2}} \over {4y}},\)
\(r = {{xy} \over {x + \sqrt {{x^2} + 4{y^2}} }}\). Vậy
\({{{V_1}} \over {{V_2}}} = {\left( {{R \over r}} \right)^3} = {\left[ {{{({x^2} + 2{y^2})(x + \sqrt {{x^2} + 4{y^2}} )} \over {4x{y^2}}}} \right]^3}.\)
Từ đó \({{{V_1}} \over {{V_2}}}\) nhỏ nhất khi và chỉ khi \({R \over r}\) nhỏ nhất.
Gọi \(\varphi \) là góc giữa mặt bên và mặt đáy của hình chóp thì \(\varphi = \widehat {SIH}\) (I là trung điểm của BC ). Khi đó \(y = {x \over 2}\tan \varphi \Rightarrow 4{y^2} = {x^2}{\tan ^2}\varphi ,\) từ đó
\(\eqalign{
& {R \over r} = {{\left( {{x^2} + {{{x^2}{{\tan }^2}\varphi } \over 2}} \right)\left( {x + \sqrt {{x^2} + {x^2}{{\tan }^2}\varphi } } \right)} \over {{x^3}{{\tan }^2}\varphi }} \cr
& = {{\left( {2 + {{\tan }^2}\varphi } \right)\left( {1 + {1 \over {\cos \varphi }}} \right)} \over {2{{\tan }^2}\varphi }} \cr
& = {{\left( {1 + {1 \over {{{\cos }^2}\varphi }}} \right)\left( {{{\cos \varphi + 1} \over {\cos \varphi }}} \right)} \over {2 \cdot {{1 - {{\cos }^2}\varphi } \over {{{\cos }^2}\varphi }}}} \cr
& = {{1 + {{\cos }^2}\varphi } \over {2\cos \varphi \left( {1 - \cos \varphi } \right)}} = {1 \over 2} \cdot {{1 + {t^2}} \over {t\left( {1 - t} \right)}} \cr} \)
(với \(0 < t = \cos \varphi < 1.\))
Như vậy, \({{{V_1}} \over {{V_2}}}\) nhỏ nhất khi và chỉ khi \(f(t) = {{1 + {t^2}} \over {t(1 - t)}}\) đạt giá trị nhỏ nhất (0< t < 1).
Ta có :
\(\eqalign{ & f'(t) = {{2t(1 - {t^2}) - (1 - 2t)(1 + {t^2})} \over {{{\left[ {t(1 - t)} \right]}^2}}} \cr & = {{2{t^2} - 2{t^3} - 1 + 2t - {t^2} + 2{t^3}} \over {{{\left[ {t(1 - t)} \right]}^2}}} = {{{t^2} + 2t - 1} \over {{t^2}{{(1 - t)}^2}}}. \cr & \cr} \)
\(f'(t) = 0 \Leftrightarrow {t^2} + 2t - 1 = 0 \Leftrightarrow t = - 1 + \sqrt 2 \) (do 0< t <1).
Ta có bảng biến thiên
Vậy f(t) đạt giá trị nhỏ nhất tại \(t = - 1 + \sqrt 2 \), tức là \(\cos \varphi = -1 + \sqrt 2 \)
\(\eqalign{ & \Leftrightarrow 1 + {\tan ^2}\varphi = {1 \over {3 - 2\sqrt 2 }} \cr & \Leftrightarrow {\tan ^2}\varphi = {{1 - 3 + 2\sqrt 2 } \over {3 - 2\sqrt 2 }} = {{2\left( {\sqrt 2 - 1} \right)} \over {{{\left( {\sqrt 2 - 1} \right)}^2}}} \cr&\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;= {2 \over {\sqrt 2 - 1}} = 2\left( {\sqrt 2 + 1} \right) \cr & \Rightarrow \tan \varphi = \sqrt {2\sqrt 2 + 2} . \cr} \)
Vậy hệ thức liên hệ giữa x và y là \(y = x{{\sqrt {2\sqrt 2 + 2} } \over 2}.\)
Khi đó \({{{V_1}} \over {{V_2}}}\) đạt giá trị nhỏ nhất.
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục