Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 77 trang 135 Sách bài tập Hình học lớp 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Viết phương trình đường vuông góc chung của các cặp đường thẳng sau :

Viết phương trình đường vuông góc chung của các cặp đường thẳng sau :

\(\eqalign{  & a)\;\;d:{{x - 2} \over 2} = {{y - 3} \over 3} = {{z + 4} \over { - 5}},\cr&\;\;\;\;\;d':{{x + 1} \over 3} = {{y - 4} \over { - 2}} = {{z - 4} \over { - 1}};  \cr  & b)\;\;d:\left\{ \matrix{  x = 2 + t \hfill \cr  y = 1 - t \hfill \cr  z = 2t \hfill \cr}  \right.,d':\left\{ \matrix{  x = 2 - 2t'. \hfill \cr  y = 3 \hfill \cr  z = t'. \hfill \cr}  \right. \cr} \)

Giải

a) Cách 1: Ta có \(\overrightarrow {{u_d}}  = \left( {2;3; - 5} \right),\overrightarrow {{u_{d'}}}  = \left( {3; - 2; - 1} \right).\)

 Khi đó vì \(\left[ {\overrightarrow {{u_d}} ,\overrightarrow {{u_{d'}}} } \right] = \left( { - 13; - 13; - 13} \right)\) nên đường vuông góc chung \(\Delta \) có một vectơ chỉ phương là \(\overrightarrow u  = \left( {1;1;1} \right).\)

Gọi \(\left( \alpha  \right)\) là mặt phẳng chứa d và \(\Delta \) thì \(\left( \alpha  \right)\) đi qua \({M_o}(2;3; - 4)\) và có vectơ pháp tuyến \(\overrightarrow {{n_\alpha }}  = \left[ {\overrightarrow {{u_d}} ,\overrightarrow u } \right] = \left( {8, - 7, - 1} \right).\)

Có phương trình của mp\(\left( \alpha  \right)\) là: \(8\left( {x - 2} \right) - 7\left( {y - 3} \right) - 1\left( {z + 4} \right) = 0\)

\( \Leftrightarrow 8x - 7y - z + 1 = 0.\)

Gọi \(\left( \beta  \right)\) là mặt phẳng chứa \(d'\) và \(\Delta \) thì \(\left( \beta  \right)\)  đi qua điểm \(M_o'\left( { - 1;4;4} \right)\) và có vectơ pháp tuyến \(\overrightarrow {{n_\beta }}  = \left[ {\overrightarrow u ,\overrightarrow {{u_{d'}}} } \right] = \left( {1;4; - 5} \right).\)

Phương trình của mp\(\left( \beta  \right)\) là :\(1\left( {x + 1} \right) + 4\left( {y - 4} \right) - 5\left( {z - 4} \right) = 0\)

\( \Leftrightarrow x + 4y - 5z + 5 = 0.\)

Vậy đường vuông góc chung \(\Delta \) của \(d\) và \(d'\) là giao tuyến của hai mặt phẳng \(\left( \alpha  \right)\) và \(\left( \beta  \right)\) . Nó có phương trình tham số là:

                               \(\left\{ \matrix{  x = t \hfill \cr  y = t \hfill \cr  z = 1 + t. \hfill \cr}  \right.\)

Cách 2: Điểm \(M \in d\) có toa độ là \(M = \left( {2 + 2t;3 + 3t; - 4 - 5t} \right).\)

Điểm \(N \in d'\) có toa độ là \(N = \left( { - 1 + 3t';4 - 2t';4 - t'} \right)\)

\( \Rightarrow \overrightarrow {MN}  = \left( { - 3 + 3t' - 2t;1 - 2t' - 3t;8 - t' + 5t} \right).\)

MN là đường vuông góc chung của \(d\) và \(d'\) khi và chỉ khi

 \(\left\{ \matrix{  \overrightarrow {MN} .\overrightarrow {{u_d}}  = 0 \hfill \cr  \overrightarrow {MN} .\overrightarrow {{u_{d'}}}  = 0 \hfill \cr}  \right.\)

Suy ra \(M = \left( {0;0;1} \right),N = \left( {2;2;3} \right) \Rightarrow \overrightarrow {MN}  = \left( {2;2;2} \right).\)

Vậy phương trình chính tắc của đường vuông góc chung \(\Delta \) là

\({x \over 1} = {y \over 1} = {{z - 1} \over 1}.\)

b)  \({{x - 2} \over 1} = {{y - 3} \over 5} = {z \over 2}.\)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan