Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 87, 88, 89, 90 trang 111, 112 SGK Toán 8 tập 1 - Ôn tập chương 1

Bình chọn:
4.9 trên 7 phiếu

Bài 87, 88, 89 trang 111, bài 90 trang 112 SGK Toán 8 tập 1 - Ôn tập chương 1. Bài 88 Cho tứ giác (ABCD). Gọi (E, F, G, H) theo thứ tự là trung điểm của (AB, BC, CD, DA.) Các đường chéo (AC, BD) của tứ giác (ABCD) có điều kiện gì thì (EFGH) là:

Bài 87 trang 111 SGK Toán lớp 8 tập 1

Câu hỏi:

Phương pháp:

a. Tập hợp các hình chữ nhật là tập hợp con của tập hợp các hình …

b. Tập hợp các hình chữ nhật là tập hợp con của tập hợp các hình …

c.  Giao của tập hợp các hình chữ nhật và tập hợp các hình thoi là tập hợp các hình…

Lời giải:

a) Tập hợp các hình chữ nhật là tập hợp con của tập hợp các hình bình hành, hình thang.

b) Tập hợp các hình thoi là tập hợp con của tập hợp các hình bình hành, hình thang.

c) Giao của tập hợp các hình chữ nhật và tập hợp các hình thoi là tập hợp các hình vuông.

Bài 88 trang 111 SGK Toán lớp 8 tập 1

Câu hỏi:

Cho tứ giác \(ABCD\). Gọi \(E, F, G, H\) theo thứ tự là trung điểm của \(AB, BC, CD, DA.\) Các đường chéo \(AC, BD\) của tứ giác \(ABCD\) có điều kiện gì thì \(EFGH\) là:

a) Hình chữ nhật?

b) Hình thoi?      

c) Hình vuông

Phương pháp:

Áp dụng:

- Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

- Tứ giác có các cạnh đối song song là hình bình hành.

- Hình bình hành có một góc vuông là hình chữ nhật.

- Hình bình hành có hai cạnh kề bằng nhau là hình thoi.

- Hình vuông vừa là hình chữ nhật vừa là hình thoi.

Lời giải:

Bài 89 trang 111 SGK Toán lớp 8 tập 1

Câu hỏi:

Cho tam giác \(ABC\) vuông tại \(A\), đường trung tuyến \(AM\). Gọi \(D\) là trung điểm của \(AB, E\) là điểm đối xứng với \(M\) qua \(D\).

a) Chứng minh rằng điểm \(E\) đối xứng với điểm \(M\) qua \(AB\).

b) Các tứ giác \(AEMC, AEBM\) là hình gì? Vì sao?

c) Cho \(BC = 4cm\), tính chu vi tứ giác \(AEBM\).

d) Tam giác vuông \(ABC\), có điều kiện gì thì \(AEBM\) là hình vuông?

Phương pháp:

- Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.

- Tứ giác có một cặp cạnh đối song song và bằng nhau là hình bình hành.

- Tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường là hình bình hành.

- Hình bình hành có hai đường chéo vuông góc là hình thoi

- Hình thoi có một góc vuông là hình vuông.

Lời giải:

⇒ D là trung điểm EM

⇒ EM = 2.MD

⇒ AC = EM.

Lại có AC // EM

⇒ Tứ giác AEMC là hình bình hành.

+ Tứ giác AEBM là hình bình hành vì có các đường chéo cắt nhau tại trung điểm của mỗi đường.

Hình bình hành AEBM lại có AB ⊥ EM nên là hình thoi.

c) Ta có: BC = 4cm ⇒ BM = 2cm

Chu vi hình thoi AEBM bằng 4.BM = 4.2 = 8cm

d)- Cách 1:

Hình thoi AEBM là hình vuông ⇔ AB = EM ⇔ AB = AC

Vậy nếu ABC vuông có thêm điều kiện AB = AC (tức tam giác ABC vuông cân tại A) thì AEBM là hình vuông.

- Cách 2:

Hình thoi AEBM là hình vuông ⇔ AM ⊥ BM

⇔ ΔABC có trung tuyến AM là đường cao

⇔ ΔABC cân tại A.

Vậy nếu ΔABC vuông có thêm điều kiện cân tại A thì AEBM là hình vuông.

Bài 90 trang 112 SGK Toán lớp 8 tập 1

Câu hỏi:

Phương pháp:

a. Hình \(110\) (sơ đồ một sân quần vợt);

b. Hình \(111\).

Lời giải:

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan