Giải các hệ phương trình sau:
a) \(\left\{ \matrix{5{\log _2}x - {\log _4}{y^2} = 8 \hfill \cr5{\log _2}{x^2} - {\log _4}y = 19 \hfill \cr} \right.\)
b) \(\left\{ \matrix{ {2^x}{.4^y} = 64 \hfill \cr \sqrt x + \sqrt y = 3 \hfill \cr} \right.\)
Giải
a) \(\left( {x;y} \right) = \left( {4;4} \right)\)
Đặt \({\log _2}x = u\) và \({\log _4}y = v\), ta có hệ:
\(\left\{ \matrix{5u - 2v = 8 \hfill \cr10u - v = 19 \hfill \cr} \right.\)
b) Lôgarit hóa hai vế của phương trình thứ nhất để đưa về dạng
\(\left\{ \matrix{x + 2y = 6 \hfill \cr \sqrt x + \sqrt y = 3 \hfill \cr} \right.\)
Rồi đặt \(\sqrt x = u,\sqrt y = v\left( {u \ge 0,v \ge 0} \right)\) dẫn đến hệ:
\(\left\{ \matrix{{u^2} + 2{v^2} - 6 = 0 \hfill \cr u + v = 3 \hfill \cr} \right.\)
Tìm được \(u = 2;v = 1\)
Suy ra \(\left( {x;y} \right) = \left( {4;1} \right)\)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục