Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Câu 1.48 trang 20 sách bài tập Giải tích 12 Nâng cao

Bình chọn:
3.4 trên 8 phiếu

a) Tìm cực đại các hệ số m, n, p sao cho hàm số

a) Tìm cực đại các hệ số m, n, p  sao cho hàm số

                    \(f(x) =  - {1 \over 3}{x^3} + m{x^2} + nx + p\)

Đạt cực đại tại điểm x = 3 và đồ thị (C) của nó tiếp xúc với đường thẳng \(y = 3x - {1 \over 3}\) tại giao điểm của (C) với trục tung                                                   

b) Khảo sát sự biến thiên và vẽ đồ thị của hàm số với các giá trị vừa tìm được của m, n, p 

Giải

a) Đường thẳng \(y = 3x - {1 \over 3}\) cắt trục tung tại điểm \(A\left( {0; - {1 \over 3}} \right)\)

Vì đồ thị (C) của hàm số đã cho đi qua điểm A nên \(f(0) = p =  - {1 \over 3}\)

Ta có \(f'(x) =  - {x^2} + 2mx + n\) . Vì (C) tiếp xúc với đường thẳng \(y = 3x - {1 \over 3}\) tại điểm A nên \(f'(0) = n = 3\)

Do hàm số đạt cực đại tại điểm x = 3 nên

                      \(f'(3) =  - 9 + 6m + 3 = 0 \Leftrightarrow m = 1\)

Với các giá trị m, n, p vừa tìm được, ta có hàm số

                      \(f(x) =  - {1 \over 3}{x^3} + {x^2} + 3x + {1 \over 3}\)

Khi đó, \(f''(x) =  - 2x + 2\) và \(f''(3) =  - 4 < 0\). Hàm số đạt cực đại tại điểm x = 3.

Sachbaitap.com

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan