Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Giải bài 5.32, 5.33, 5.34, 5.35, 5.36, 5.37, 5.38, 5.39, 5.40 trang 113 SGK Toán 9 Kết nối tri thức tập 1

Bình chọn:
3.4 trên 5 phiếu

Giải SGK Toán 9 trang 113 Kết nối tri thức tập 1.Bài 5.32: Cho đường tròn (O; 4 cm) và hai điểm A, B. Biết rằng OA = (sqrt {15} )cm và OB = 4 cm. Khi đó: A. Điểm A nằm trong (O), điểm B nằm ngoài (O).B. Điểm A nằm ngoài (O), điểm B nằm trên (O).

Bài 5.32 trang 112 SGK Toán 9 tập 1 - Kết nối tri thức

Cho đường tròn (O; 4 cm) và hai điểm A, B. Biết rằng OA = \(\sqrt {15} \)cm và OB = 4 cm. Khi đó:

A. Điểm A nằm trong (O), điểm B nằm ngoài (O).

B. Điểm A nằm ngoài (O), điểm B nằm trên (O).

C. Điểm A nằm trên (O), điểm B nằm trong (O).

D. Điểm A nằm trong (O), điểm B nằm trên (O).

Phương pháp:

So sánh OA và OB với bán kính đường tròn.

Nếu OA = R thì A nằm trên (O).

Nếu OA > R thì A nằm ngoài (O).

Nếu OA = R thì A nằm trong (O).

Lời giải:

Đáp án đúng là: D

 nên điểm A nằm trong (O; 4 cm).

Vì OB = 4 cm nên điểm B nằm trên (O; 4 cm).

Vậy điểm A nằm trong (O), điểm B nằm trên (O).

Bài 5.33 trang 112 SGK Toán 9 tập 1 - Kết nối tri thức

Cho hình 5.43, trong đó BD là đường kính, \(\widehat {{\rm{AOB}}} = 40^\circ ;\widehat {\,{\rm{BOC}}} = 100^\circ \). Khi đó:

A. sđ \(\overset\frown{\text{DC}}=80{}^\circ \) và sđ \(\overset\frown{\text{AD}}=220{}^\circ \)

B. sđ \(\overset\frown{\text{DC}}=280{}^\circ \) và sđ \(\overset\frown{\text{AD}}=220{}^\circ \)

C. sđ \(\overset\frown{\text{DC}}=280{}^\circ \) và sđ \(\overset\frown{\text{AD}}=140{}^\circ \)

D. sđ \(\overset\frown{\text{DC}}=80{}^\circ \) và sđ \(\overset\frown{\text{AD}}=140{}^\circ \)

Phương pháp:

a) Hai đường tròn (T1) và (T2) là hai đường tròn đồng tâm, (T1) chứa (T2).

b) So sánh khoảng cách giữa tâm của 2 đường tròn với tổng hiệu hai bán kính, từ đó suy ra vị trí tương đối của hai đường tròn.

Lời giải:

Đáp án đúng là: D

Bài 5.34 trang 112 SGK Toán 9 tập 1 - Kết nối tri thức

Cho hai đường tròn \(\left( {{\rm{A;}}\,{{\rm{R}}_{\rm{1}}}} \right){\rm{, }}\left( {{\rm{B;}}\,{{\rm{R}}_{\rm{2}}}} \right){\rm{,}}\) trong đó \({{\rm{R}}_{\rm{2}}} < \,{{\rm{R}}_{\rm{1}}}.\) Biết rằng hai đường tròn (A) và (B) cắt nhau (H.5.44).

Khi đó:

A. \({\rm{AB}} < {{\rm{R}}_1} - \,{{\rm{R}}_{\rm{2}}}.\)

B. \({{\rm{R}}_1} - \,{{\rm{R}}_{\rm{2}}} < {\rm{AB}} < {{\rm{R}}_1} + \,{{\rm{R}}_{\rm{2}}}.\)

C. \({\rm{AB}} > {{\rm{R}}_1} + \,{{\rm{R}}_{\rm{2}}}.\)

D. \({\rm{AB}} = {{\rm{R}}_1} + \,{{\rm{R}}_{\rm{2}}}.\)

Phương pháp:

Áp dụng bất đẳng thức trong tam giác.

Lời giải:

Đáp án đúng là: B

Áp dụng bất đẳng thức trong tam giác ABC, ta có:

AC – BC < AB < AC + BC.

Do đó R1 − R< AB < R1 + R2.

Bài 5.35 trang 112 SGK Toán 9 tập 1 - Kết nối tri thức

Cho đường tròn (O; R) và hai đường thẳng \({{\rm{a}}_1}\)và \({{\rm{a}}_2}.\) Gọi \({{\rm{d}}_1},{{\rm{d}}_2}\) lần lượt là khoảng cách từ điểm O đến \({{\rm{a}}_1}\)và \({{\rm{a}}_2}.\) Biết rằng (O) cắt \({{\rm{a}}_1}\) và tiếp xúc với \({{\rm{a}}_2}\) (H.5.45).

Khi đó:

A. \({{\rm{d}}_1} < {\rm{R}}\)và \({{\rm{d}}_2} = {\rm{R}}\)

B. \({{\rm{d}}_1} = {\rm{R}}\)và \({{\rm{d}}_2} < {\rm{R}}\)

C. \({{\rm{d}}_1} > {\rm{R}}\)và \({{\rm{d}}_2} = {\rm{R}}\)

D. \({{\rm{d}}_1} < {\rm{R}}\)và \({{\rm{d}}_2} < {\rm{R}}\)

Phương pháp:

+ Nếu đường thẳng tiếp xúc với đường tròn thì d = R

+ Nếu đường thẳng cắt đường tròn thì d < R

+ Nếu đường thẳng nằm ngoài đường tròn với đường tròn thì d > R

với d là khoảng cách từ tâm O đến đường thẳng đó.

Lời giải:

Đáp án đúng là: A

• Vì (O) cắt anên d1 < R.

• Vì (O) tiếp xúc anên d2 = R.

Vậy d1 < R, d2 = R.

Bài 5.36 trang 112 SGK Toán 9 tập 1 - Kết nối tri thức

Cho đường tròn (O) đường kính BC và điểm A (khác B và C).

a) Chứng minh rằng nếu A nằm trên (O) thì ABC là một tam giác vuông; ngược lại, nếu ABC là tam giác vuông tại A thì nằm trên (O).

b) Giả sử A là một trong hai giao điểm của đường tròn (B; BO) với đường tròn (O). Tính các góc của tam giác ABC.

c) Với cùng giả thiết câu b), tính độ dài cung AC và diện tích hình quạt nằm trong (O) giới hạn bởi các bán kính OA và OC, biết rằng BC = 6 cm.

Phương pháp:

Tam giác có đường trung tuyến ứng với một cạnh và bằng nửa cạnh đấy là tam giác vuông

Diện tích hình quạt tròn bán kính R ứng với cung n0 là \(\frac{{\pi {R^2}.n}}{{360}}\)

Độ dài cung tròn n0 của đường tròn bán kính R là \(\frac{{\pi Rn}}{{180}}\)

Lời giải:

a)

Vì điểm A nằm trên đường tròn tâm O nên AO = BO = CO.

Tam giác ABC có AO là đường trung tuyến ứng với cạnh BC và nên tam giác ABC vuông tại A.

Chiều ngược lại: Nếu tam giác ABC vuông tại A, gọi O là trung điểm của cạnh huyền BC thì ta có AO = BO = CO (tính chất đường trung tuyến trong tam giác vuông).

Từ đó ta có A, B, C thuộc đường tròn tâm O.

b)

Vì điểm A là giao điểm của hai đường tròn (O) và (B) nên A thuộc (O) đường kính BC nên tam giác BAC vuông tại A.

Tam giác ABO có AB = BO = AO nên tam giác ABO đều suy ra

Bài 5.37 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức

Cho AB là một dây bất kì (không phải là đường kính) của đường tròn (O; 4 cm). Gọi C và D lần lượt là các điểm đối xứng với A và B qua tâm O.

a) Hai điểm C và D có nằm trên đường tròn (O) không? Vì sao?

b) Biết rằng ABCD là một hình vuông. Tính độ dài cung lớn AB và diện tích hình quạt tròn tạo bởi hai bán kính OA và OB.

Phương pháp:

a) Nếu một điểm thuộc đường tròn (O) thì điểm đối xứng với nó qua tâm O cũng thuộc (O).

b) Tính số đo góc \(\widehat {{\rm{AOB}}}\), rồi suy ra số đo cung lớn AB.

Áp dụng công thức tính độ dài cung và diện tích hình quạt tròn để tính.

Lời giải:

a) Vì A thuộc (O), C là điểm đối xứng của A qua O nên C thuộc (O);

Vì B thuộc (O), D là điểm đối xứng của B qua O nên D thuộc (O).

b) ABCD là hình vuông nên AC và BD vuông góc.

Vậy độ dài cung lớn AB là 6π (cm); diện tích hình quạt tròn tạo bởi hai bán kính OA và OB là 4π (cm2).

Bài 5.38 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức

Cho điểm B nằm giữa hai điểm A và C, sao cho AB = 2 cm và BC = 1 cm. Vẽ các đường tròn (A; 1,5 cm), (B; 3 cm) và (C; 2 cm). Hãy xác định các cặp đường tròn:

a) Cắt nhau;

b) Không giao nhau;

c) Tiếp xúc với nhau.

Phương pháp:

Vẽ hình theo giả thiết rồi chỉ ra các cặp đường thẳng thỏa mãn.

Lời giải:

a) Cặp đường thẳng cắt nhau: (A) và (B); (A) và (C).

b) Không có cặp đường tròn nào không giao nhau.

c) Tiếp xúc với nhau: (B) và (C).

Bài 5.39 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức

Cho tam giác vuông ABC (A vuông). Vẽ hai đường tròn (B; BA) và (C; CA) cắt nhau tại A và A’. Chứng minh rằng:

a) BA và BA’ là hai tiếp tuyến cắt nhau của (C; CA).

b) CA và CA’ là hai tiếp tuyến cắt nhau của (B; BA). 

Phương pháp:

a) Chứng minh \(\Delta {\rm{ABC}} = \Delta {\rm{A'BC}}\) từ đó suy ra \(\widehat {{\rm{BA'C}}} = \widehat {{\rm{BAC}}} = 90^\circ \).

Do đó BA và BA’ là hai tiếp tuyến cắt nhau của (C; CA).

b)  Lần lượt chứng minh CA và CA’ là các tiếp tuyến của (B; BA).

Lời giải:

a) Xét ΔABC và ΔA'BC có:

BA = BA'

BC chung

CA = CA'

Do đó ΔABC = ΔA'BC (c.c.c).

Suy ra (hai góc tương ứng)

Khi đó CA′ ⊥ BA′ tại A′ nên BA′ là tiếp tuyến của (C; CA)

Lại có: CA ⊥ BA tại A nên BA là tiếp tuyến của (C; CA)

Vậy CA và CA′ là hai tiếp tuyến cắt nhau của (C; CA).

b) CA′ ⊥ BA′ tại A′ nên CA′ là tiếp tuyến của (B; BA).

CA ⊥ BA tại A nên CA là tiếp tuyến của (B; BA).

Vậy BA và BA′ là hai tiếp tuyến cắt nhau của (B; BA).

Bài 5.40 trang 113 SGK Toán 9 tập 1 - Kết nối tri thức

Cho hai đường tròn (O) và (O’) cắt nhau tại A và B. Một đường thẳng d đi qua A cắt (O) tại E và cắt (O’) tại F (E và F) khác A. Biết điểm A nằm trong đoạn EF. Gọi I và K lần lượt là trung điểm của AE và AF (H.5.46).

 

a) Chứng minh rằng tứ giác OO’KI là một hình thang vuông.

b) Chứng minh rằng \({\rm{IK}} = \frac{1}{2}{\rm{EF}}\).

c) Khi d ở vị trí nào (d vẫn qua A) thì OO’KI là một hình chữ nhật?

Phương pháp:

a) Chứng minh OO’KI là hình thang có 1 góc vuông.

b) Áp dụng tính chất trung điểm của đoạn thẳng.

c) Hình thang OO’KI là hình chữ nhật khi và chỉ khi \(\widehat {{\rm{OIO'}}} = 90^\circ \).

Lời giải:

a) Tam giác OAE cân tại O có OI là trung tuyến nên OI cũng là đường cao.

Tam giác O'AF cân tại O có O'K là trung tuyến nên O'K cũng là đường cao.

Suy ra OI // O'K (vì cùng vuông góc với d).

Do đó OO'KI là hình thang.

Mà d ⊥ OI  nên d // OO′.

Vậy d vẫn qua A và d // OO′ thì OO'KI là một hình chữ nhật.

Sachbaitap.com

Bài tiếp theo

Bài viết liên quan