Bài 1 trang 63 SGK Toán 11 - Cánh Diều tập 2
Tính đạo hàm của hàm số \(f(x) = 3{x^3} - 1\) tại điểm \({x_0} = 1\) bằng định nghĩa
Phương pháp:
Sử dụng định nghĩa đạo hàm để tính đạo hàm
Lời giải:
Xét ∆x là số gia của biến số tại điểm x0 = 1.
Ta có ∆y = f(1 + ∆x) – f(1) = 3(1 + ∆x)3 – 1 – (3.13 – 1)
= 3 + 9∆x + 9.(∆x)2 + 3(∆x)3 – 1 – 2
= 9∆x + 9.(∆x)2 + 3(∆x)3
= ∆x[9 + 9∆x + 3(∆x)2].
Bài 2 trang 63 SGK Toán 11 - Cánh Diều tập 2
Chứng minh rằng hàm số \(f(x) = \left| x \right|\) không có đạo hàm tại điểm \({x_0} = 0\), nhưng có đạo hàm tại mọi điểm \(x \ne 0\)
Phương pháp:
Tách \(f(x) = \left| x \right|\) thành 2 phần và tìm đạo hàm của từng phần.
Lời giải:
Xét ∆x là số gia của biến số tại điểm x0 = 0.
Ta có ∆y = f(0 + ∆x) – f(0) = |∆x| – |0| = |∆x|.
⦁ Với x > 0 ta có hàm số f(x) = x.
Xét ∆x là số gia của biến số tại điểm x > 0.
Ta có ∆y = f(x + ∆x) – f(x) = (x + ∆x) – x = ∆x.
Do đó với x > 0 thì hàm số có đạo hàm f’(x) = 1.
⦁ Với x < 0 ta có hàm số f(x) = –x.
Xét ∆x là số gia của biến số tại điểm x < 0.
Ta có ∆y = f(x + ∆x) – f(x) = – (x + ∆x) + x = –∆x.
Do đó với x < 0 thì hàm số có đạo hàm f’(x) = –1.
Vậy hàm số f(x) = |x| không có đạo hàm tại x0 = 0, nhưng có đạo hàm tại mọi điểm x ≠ 0.
Bài 3 trang 63 SGK Toán 11 - Cánh Diều tập 2
Cho hàm số \(y = - 2{x^2} + x\) có đồ thị (C).
a) Xác định hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2
b) Viết phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; - 6)
Phương pháp:
Phương tình tiếp tuyến của đồ thị hàm số tại điểm \({M_0}\):
\(y = {k_0}(x - {x_0}) + {y_0}\)
Lời giải:
a) Tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2 có hệ số góc là:
Vậy hệ số góc của tiếp tuyến của đồ thị (C) tại điểm có hoành độ bằng 2 là f’(x) = –7.
b) Phương trình tiếp tuyến của đồ thị (C) tại điểm M(2; – 6) là: y = –7(x – 2) – 6 hay y = –7x + 8.
Bài 4 trang 63 SGK Toán 11 - Cánh Diều tập 2
Giả sử chi phí C (USD) để sản xuất Q máy vô tuyến là \(C(Q) = {Q^2} + 80Q + 3500\)
a) Ta gọi chi phí biên là chi phí gia tăng để sản xuất thêm 1 sản phẩm từ Q sản phẩm lên Q + 1 sản phẩm. Giả sử chi phí biên được xác định bởi hàm số C’(Q). Tìm hàm chi phí biên.
b) Tìm C’(90) và giải thích ý nghĩa kết quả tìm được
c) Hãy tính chi phí sản xuất máy vô tuyến thứ 100.
Phương pháp:
Áp dụng quy tắc tính đạo hàm bằng định nghĩa để tính
Lời giải:
a) Xét ∆Q là số gia của biến số tại điểm Q.
Ta có ∆C = C(Q + ∆Q) – C(Q)
= (Q + ∆Q)2 + 80(Q + ∆Q) + 3 500 – Q2 – 80Q – 3 500
= (∆Q)2 + 2Q. ∆Q + 80∆Q.
= ∆Q(∆Q + 2Q + 80).
Vậy hàm chi phí biên là: C’(Q) = 2Q + 80 (USD).
b) Ta có C’(90) = 2 . 90 + 80 = 260 (USD).
Ý nghĩa: Để sản xuất thêm 1 sản phẩm từ 90 lên 91 sản phẩm cần chi phí biên (chi phí gia tăng) là 260 (USD)
Sachbaitap.com
Bài viết liên quan