Bài 4.21 trang 93 SGK Toán 11 tập 1 - Kết Nối Tri Thức
Trong không gian cho ba mặt phẳng phân biệt (P), (Q), (R). Những mệnh đề nào sau đây là đúng?
a) Nếu (P) chứa một đường thẳng song song với (Q) thì (P) song song với (Q)
b) Nếu (P) chứa hai đường thẳng song song với (Q) thì (P) song song với (Q)
c) Nếu (P) và (Q) song song với (R) thì (P) song song với (Q)
d) Nếu (P) và (Q) cắt (R) thì (P) và (Q) song song với nhau.
Phương pháp:
- Nếu mặt phẳng chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với mặt phẳng thì và song song với nhau.
- Nếu một mặt phẳng cắt mặt phẳng này thì cũng cắt mặt phẳng kia và hai giao tuyến song song với nhau.
Lời giải:
a) Mệnh đề a) là mệnh đề sai vì hai mặt phẳng (P) và (Q) có thể cắt nhau theo giao tuyến b song song với đường thẳng a nằm trong (P).
b) Mệnh đề b) là mệnh đề sai vì thiếu điều kiện hai đường thẳng đó phải cắt nhau.
c) Mệnh đề c) là mệnh đề đúng vì (P) và (Q) là hai mặt phẳng phân biệt cùng song song với mặt phẳng thứ ba là mặt phẳng (R) thì (P) và (Q) song song với nhau.
d) Mệnh đề d) là mệnh đề sai vì (P) và (Q) cắt (R) thì (P) và (Q) có thể cắt nhau.
Bài 4.22 trang 94 SGK Toán 11 tập 1 - Kết Nối Tri Thức
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M, N, P lần lượt là trung điểm của các cạnh AA’, BB’, CC’. Chứng minh rằng mặt phẳng (MNP) song song với mặt phẳng (ABC).
Phương pháp:
Nếu mặt phẳng chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với mặt phẳng thì và song song với nhau.
Lời giải:
Vì ABC.A'B'C' là hình hình lăng trụ tam giác nên ABB'A' và BCC'B' là các hình bình hành hay cũng là các hình thang.
Vì M, N lần lượt là trung điểm của các cạnh AA', BB' nên MN là đường trung bình của hình thang ABB'A', do đó MN // AB, suy ra MN song song với mặt phẳng (ABC).
Mặt phẳng (MNP) chứa hai đường thẳng cắt nhau MN và NP cùng song song với mặt phẳng (ABC) nên hai mặt phẳng (MNP) và (ABC) song song với nhau.
Bài 4.23 trang 94 SGK Toán 11 tập 1 - Kết Nối Tri Thức
Cho hình thang ABCD có hai đáy AB và CD. Qua các điểm A, D lần lượt vẽ các đường thẳng m, n song song với nhau và không nằm trong mặt phẳng (ABCD). Chứng minh rằng mp(B,m) và mp(C,n) song song với nhau.
Phương pháp:
Nếu mặt phẳng \(\left( \alpha \right)\) chứa hai đường thẳng cắt nhau và hai đường thẳng này song song với mặt phẳng \(\left( \beta \right)\) thì \(\left( \alpha \right)\) và \(\left( \beta \right)\) song song với nhau.
Lời giải:
Vì m // n nên đường thẳng m song song với mp(C, n).
Vì ABCD là hình thang có hai đáy là AB và CD nên AB // CD, suy ra đường thẳng AB song song với mp(C, n).
Bài 4.24 trang 94 SGK Toán 11 tập 1 - Kết Nối Tri Thức
Cho hình tứ diện SABC. Trên cạnh SA lấy các điểm \({A_1},{A_2}\)sao cho \(A{A_1} = {A_1}{A_2} = {A_2}S.\) Gọi (P) và (Q) là hai mặt phẳng song song với mặt phẳng (ABC) và lần lượt đi qua \({A_1},{A_2}.\) Mặt phẳng (P) cắt các cạnh SB, SC lần lượt tại \({B_1},{C_1}.\) Mặt phẳng (Q) cắt các canhj SB, SC lần lượt tại \({B_2},{C_2}.\) Chứng minh \(B{B_1} = {B_1}{B_2} = {B_2}S\) và \(C{C_1} = {C_1}{C_2} = {C_2}S\).
Phương pháp:
Ba mặt phẳng đôi một song song chắn trên hai cát tuyến phân biệt bất kì những đoạn thẳng tương ứng tỉ lệ.
Lời giải:
Bài 4.25 trang 94 SGK Toán 11 tập 1 - Kết Nối Tri Thức
Cho hình lăng trụ tứ giác ABCD. A’B’C’D’. Một mặt phẳng song song với mặt phẳng (A’B’C’D’) cắt các cạnh bên của hình lăng trụ lần lượt tại A”, B”, C”, D”. Hỏi hình tạo bởi các điểm A, B, C, D, A”, B”, C”, D” là hình gì?
Phương pháp:
Hình lăng trụ có đáy là hình tam giác được gọi là hinh lăng trụ tam giác, hình lăng trụ có đáy là tứ giác được gọi là hình lăng trụ tứ giác.
Lời giải:
Vì các cạnh bên của hình lăng trụ đôi một song song với nhau nên AA", BB", CC", DD" đôi một song song (2).
Bài 4.26 trang 94 SGK Toán 11 tập 1 - Kết Nối Tri Thức
Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi G và G’ lần lượt là trọng tâm của hai tam giác ABC và A’B’C’.
a) Chứng minh rằng tứ giác AGG’A’ là hình bình hành.
b) Chứng minh rằng AGC.A’G’C’ là hình lăng trụ.
Phương pháp:
Sử dụng định nghĩa hình bình hành và hình lăng trụ để chứng minh.
Lời giải:
a) Gọi M và N lần lượt là trung điểm của BC và B'C'. Khi đó ta có MN là đường trung bình của hình bình hành BCC'B', suy ra MN // BB' và MN = BB'.
Do ABC.A'B'C' là hình lăng trụ tam giác nên AA' // BB' và AA' = BB'.
Từ đó suy ra MN // AA' và MN = AA'. Do đó, AMNA' là hình bình hành.
Suy ra AM // A'N và AM = A'N.
Bài 4.27 trang 94 SGK Toán 11 tập 1 - Kết Nối Tri Thức
Cho hình hộp ABCD.A’B’C’D’. Một mặt phẳng song song với mặt bên (ABB’A’) của hình hộp và cắt các cạnh AD, BC, A’D, B’C’ lần lượt tại M, N, M’, N’ (H.4.54).
Chứng minh rằng ABNM.A’B’N’M” là hình hộp.
Phương pháp:
Hình lăng trụ tứ giác có hai đáy là hình bình hành được gọi là hình hộp.
Lời giải:
Vì ABCD.A'B'C'D' là hình hộp nên các cạnh bên AA', BB', CC', DD' đôi một song song với nhau và (ABCD) // (A'B'C'D').
Vì M thuộc AD và N thuộc BC nên MN nằm trong mặt phẳng ABCD, tương tự M'N' nằm trong mặt phẳng (A'B'C'D'). Do đó, (ABNM) // (A'B'N'M') (1).
Ta có: (ABB'A') // (MNN'M') và mặt phẳng (ABCD) cắt (ABB'A') và (MNN'M') lần lượt theo các giao tuyến AB và MN, do đó AB // MN.
Tương tự, ta chứng minh được: M'N' // A'B'; NN' // BB'; MM' // AA'.
Mà AA' // BB' do đó bốn đường thẳng AA', BB', NN', MM' đôi một song song với nhau (2).
Từ (1) và (2) suy ra ABNM.A'B'N'M' là hình lăng trụ.
Tứ giác ABNM có AB // MN và AM // BN (do AD // BC) nên ABNM là hình bình hành.
Tứ giác A'B'N'M' có A'B' // M'N' và A'M' // B'N' (do A'D' // B'C') nên A'B'N'M' là hình bình hành.
Hình lăng trụ ABNM.A'B'N'M' có đáy là hình bình hành nên nó là hình hộp.
Bài 4.28 trang 94 SGK Toán 11 tập 1 - Kết Nối Tri Thức
Cầu thang xương cá là dạng cầu thang có hình dáng tương tư như những đốt xương cá, thường có những bậc thang với khoảng mở lớn, tạo được sự nhẹ nhàng và thoáng đãng cho không gian sông. Trong Hình 4.55, phần mép của mỗi bậc thang, nằm trên tường song song với nhau. Hãy giải thích tại sao.
Phương pháp:
Áp dụng định lí Thales trong không gian.
Lời giải:
Các bậc cầu thang là các mặt phẳng song song với nhau từng đôi một, mặt phẳng tường cắt mỗi mặt phẳng là các bậc của cầu thang theo các giao tuyến là phần mép của mỗi bậc cầu thang nằm trên tường nên các giao tuyến này song song với nhau.
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục