Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 11 trang 215 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
4 trên 2 phiếu

Chứng minh rằng tiếp tuyến của hypebo...

Chứng minh rằng tiếp tuyến của hypebol \(y = {{{a^2}} \over x}\) lập thành với các trục toạ độ một tam giác có diện tích không đổi.

Giải :

\(y = {{{a^2}} \over x} \Rightarrow y'\left( {{x_0}} \right) =  - {{{a^2}} \over {x_0^2}}.\)

Phương trình tiếp tuyến tại \(M\left( {{x_0};{y_0}} \right)\) là

\(\eqalign{
& y - {{{a^2}} \over {{x_0}}} = - {{{a^2}} \over {x_0^2}}\left( {x - {x_0}} \right) \cr
& \Leftrightarrow y = - {{{a^2}x} \over {x_0^2}} + {{2{a^2}} \over {{x_0}}}. \cr} \)

Suy ra diện tích tam giác OAB là

\(S = {1 \over 2}.\left| {{{2{a^2}} \over {{x_0}}}} \right|.2\left| {{x_0}} \right| = 2{a^2} = const.\)

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Bài viết liên quan