Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.15 trang 15 Sách bài tập (SBT) Giải tích 12

Bình chọn:
4 trên 2 phiếu

Xác định giá trị của m để hàm số sau có cực trị:

Xác định giá trị của m để hàm số sau có cực trị:

a) \(y = {x^3} - 3{x^2} + mx - 5\)

b) \(y = {x^3} + 2m{x^2} + mx - 1\)

c) \(y = {{{x^2} - 2mx + 5} \over {x - m}}\)

Hướng dẫn làm bài:

a) TXĐ:  D = R

  \(y' = 3{x^2} - 6x + m\)

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔ 3x2 – 6x + m  có hai nghiệm phân biệt.

⇔ ∆’ = 9 – 3m > 0  ⇔ 3m < 9 ⇔ m < 3.

Vậy hàm số đã cho có cực trị khi m < 3.

b) TXĐ: D = R

y’ = 3x2 + 4mx + m

Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên R.

⇔  3x2 + 4mx + m có hai nghiệm phân biệt.

⇔ ∆’ = 4m2 -3m > 0   ó m(4m – 3) > 0

\( \Leftrightarrow \left[ \matrix{
m < 0 \hfill \cr
m > {3 \over 4} \hfill \cr} \right.\)

Vậy hàm số đã cho có cực đại, cực tiểu khi m < 0 hoặc \(m > {3 \over 4}\) .

c) TXĐ:  D = R\{m}

\(y' = {{{x^2} - 2mx + 2{m^2} - 5} \over {{{(x - m)}^2}}}\) 

 Hàm số có cực trị khi và chỉ khi y’ đổi dấu trên D

⇔ x2 – 2mx + 2m2 – 5  có hai nghiệm phân biệt.

⇔  ∆’ = - m2 + 5 > 0 ⇔  \( - \sqrt 5  < m < \sqrt 5 \)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan