Cho hai điểm phân biệt A, B và phép dời hình f biến A thành A, biến B thành B. Chứng minh rằng f biến mọi điểm M nằm trên đường thẳng AB thành chính nó.
Giải
Ta có \(f\left( A \right) = A,f\left( B \right) = B\).
Giả sử điểm M thuộc đường thẳng AB và \(f\left( M \right) = {M'}\). Khi đó \({M'}\) thuộc đường thẳng AB và \(AM = A{M'},BM = B{M'}.\)
Suy ra M’ trùng M, tức là f biến M thành chính nó.
Sachbaitap.com
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục