Cho tam giác ABC và phép dời hình f biến tam giác ABC thành chính nó với \(f\left( A \right) = A,f\left( B \right) = B,f\left( C \right) = C\). Chứng minh rằng f biến mọi điểm M của \(mp\left( {ABC} \right)\)thành chính nó, tức là \(f\left( M \right) = M\).
Giải
Ta có \(f\left( A \right) = A,f\left( B \right) = B,f\left( C \right) = C\) nên \(f\) biến \(mp\left( {ABC} \right)\) thành \(mp\left( {ABC} \right)\). Bởi vậy, nếu M thuộc \(mp\left( {ABC} \right)\) và \(f(M)=M'\) thì M' thuộc mp(ABC) và \(AM = A{M'},BM = B{M'},CM = C{M'}\).
Nếu \({M'}\) và \(M\) phân biệt thì ba điểm \(A,B,C\) cùng thuộc đường thẳng trung trực của đoạn thẳng \(M{M'}\) (xét trên \(mp\left( {ABC} \right)\)), trái với giả thiết \(ABC\) là tam giác.
Vậy \(f\left( M \right) = M.\)
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục