Cho biết dãy số \(\left( {{u_n}} \right)\) có giới hạn hữu hạn, còn dãy số \(\left( {{v_n}} \right)\) không có giới hạn hữu hạn. Dãy số \(\left( {{u_n} + {v_n}} \right)\) có thể có giới hạn hữu hạn không ?
Giải:
Dãy \(\left( {{u_n} + {v_n}} \right)\) không có giới hạn hữu hạn.
Thật vậy, giả sử ngược lại, \(\left( {{u_n} + {v_n}} \right)\) có giới hạn hữu hạn.
Khi đó, các dãy số \(\left( {{u_n} + {v_n}} \right)\) và \(\left( {{u_n}} \right)\) cùng có giới hạn hữu hạn, nên hiệu của chúngcũng là một dãy có giới hạn hữu hạn, nghĩa là dãy số có số hạng tổng quát là \({u_n} + {v_n} - {u_n} = {v_n}\) có giới hạn hữu hạn. Điều này trái với giả thiết \(\left( {{v_n}} \right)\) không có giới hạn hữu hạn.
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục