Bài 15 trang 45 SGK Toán lớp 9 tập 2
Câu hỏi:
Không giải phương trình, hãy xác định các hệ số \(a, b, c\), tính biệt thức \(∆\) và xác định số nghiệm của mỗi phương trình sau:
a) \(7{x^2} - 2x + 3 = 0\)
b) \(5{x^2} + 2\sqrt {10} x + 2 = 0\)
c) \(\dfrac{1 }{2}{x^2} + 7x + \dfrac{2 }{3} = 0\)
d) \(1,7{x^2} - 1,2x - 2,1=0\)
Lời giải:
a)
\(7{x^2} - 2x + 3 = 0\)
Ta có: \(a = 7,\ b = - 2,\ c = 3\).
Suy ra \(\Delta = b^2-4ac={( - 2)^2} - 4.7.3 = - 80 < 0\).
Do đó phương trình đã cho vô nghiệm.
b)
\(5{x^2} + 2\sqrt {10} x + 2 = 0\)
Ta có: \(a = 5,\ b = 2\sqrt {10} ,\ c = 2\).
Suy ra \(\Delta = b^2-4ac = {(2\sqrt {10} )^2} - 4.5.2 = 0\).
Do đó phương trình có nghiệm kép.
c)
\(\dfrac{1 }{2}{x^2} + 7x + \dfrac{2 }{3} = 0\)
Ta có: \(a = \dfrac{1}{2},\ b = 7,\ c = \dfrac{2}{3}\).
Suy ra \(\Delta =b^2-4ac= {7^2} - 4.\dfrac{1 }{2}.\dfrac{2 }{3} = \dfrac{143}{ 3} > 0\).
Do đó phương trình có hai nghiệm phân biệt.
d)
\(1,7{x^2} - 1,2x - 2,1 = 0\)
Ta có: \(a = 1,7;\ b = - 1,2;\ c = - 2,1\).
Suy ra \(\Delta = b^2-4ac\)
\(={( - 1,2)^2} - 4.1,7.( - 2,1) = 15,72 > 0\).
Do đó phương trình có hai nghiệm phân biệt.
Bài 16 trang 45 SGK Toán lớp 9 tập 2
Câu hỏi:
Dùng công thức nghiệm của phương trình bậc hai để giải các phương trình sau:
a) \(2{x^2} - 7x + 3 = 0\)
b) \(6{x^2} + x + 5 = 0\)
c) \(6{x^2} + x - 5 = 0\)
d) \(3{x^2} + 5x + 2 = 0\)
e) \({y^2} - 8y + 16 = 0\)
f) \(16{z^2} + 24z + 9 = 0\)
Lời giải:
a)
\(2{x^2} - 7x + 3 = 0\)
Ta có: \(a = 2,\ b = - 7,\ c = 3.\)
Suy ra \(\Delta =b^2-4ac= {( - 7)^2} - 4.2.3 = 25 > 0\).
Do đó phương trình có hai nghiệm phân biệt:
\(x_1=\dfrac{-(-7)-\sqrt{25}}{2.2}=\dfrac{7-5}{4}=\dfrac{1}{2}\)
\({x_2} = \dfrac{-(-7)+\sqrt{25}}{2.2}=\dfrac{7+5}{4}=3\).
b)
\(6{x^2} + x + 5 = 0\)
Ta có: \(a = 6,\ b = 1,\ c = 5\)
Suy ra \(\Delta = b^2-4ac={(1)^2} - 4.6.5 = - 119< 0\).
Do đó phương trình vô nghiệm
c)
\(6{x^2} + x - 5 = 0\)
Ta có: \(a = 6,\ b = 1,\ c = - 5\)
Suy ra \(\Delta = b^2-4ac={1^2} - 4.6.(-5) = 121 > 0 \)
Do đó phương trình có hai nghiệm phân biệt:
\({x_1} = \dfrac{-1+\sqrt{121}}{2.6}=\dfrac{-1+11}{12}= \dfrac{5}{6}\)
\({x_2} = \dfrac{-1-\sqrt{121}}{2.6}=\dfrac{-1-11}{12}= -1\).
d)
\(3{x^2} + 5x + 2 = 0\)
Ta có: \(a = 3,\ b = 5,\ c = 2\)
Suy ra \(\Delta = b^2 - 4ac ={5^2} - 4.3.2 = 1 > 0\)
Do đó phương trình có hai nghiệm phân biệt:
\({x_1} = \dfrac{-5+\sqrt 1}{2.3}=\dfrac{-4}{6} =-\dfrac{2}{3}\)
\({x_2} = \dfrac{-5-\sqrt 1}{2.3}=\dfrac{-6}{6} =-1\).
e)
\({y^2} - 8y + 16 = 0\)
Ta có: \(a = 1,\ b = - 8,\ c = 16\)
Suy ra \(\Delta = b^2-4ac={( - 8)^2} - 4.1.16 = 0\)
Do đó phương trình có nghiệm kép:
\({y_1} = {y_2} = \dfrac{-(-8)}{2.1} = 4\)
f)
\(16{z^2} + 24z + 9 = 0\)
Ta có: \(a = 16,\ b = 24,\ c = 9\)
Suy ra \(\Delta =b^2-4ac = {(24)^2} - 4.16.9 = 0\)
Do đó phương trình có hai nghiệm kép:
\({z_1} = {z_2} = - \dfrac{24}{2.16} = \dfrac{-3}{4}\).
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục