Trong không gian Oxyz cho hai điểm A(3;3;1), B(0;2;1) và mặt phẳng
(P):x+y+z-7=0.
1. Viết phương trình đường thẳng AB.
2. Viết phương trình hình chiếu vuông góc của AB trên mp(P).
3. Viết phương trình đường thẳng d nằm trong mp(P) và mọi điểm của d cách đều hai điểm A, B.
4. Viết phương trình đường vuông góc chung của AB và d.
5. Tìm điểm K thuộc đường thẳng AB (\(K \ne B\)) sao cho
d(K,(P))=d(B,(P)).
6. Tìm điểm C trên đường thẳng d sao cho diện tích tam giác ABC nhỏ nhất.
Giải
1. Đường thẳng AB đi qua \(A\left( {3{\rm{ }};{\rm{ }}3{\rm{ }};{\rm{ }}1} \right),\) có vectơ chỉ phương \(\overrightarrow {AB} = \left( { - 3;{\rm{ }} - {\rm{ }}1;{\rm{ }}0} \right)\) nên có phương trình :
\(\left\{ {\matrix{ {x{\rm{ }} = {\rm{ }}3 - 3t} \hfill \cr {y{\rm{ }} = {\rm{ }}3 - t} \hfill \cr {z{\rm{ }} = {\rm{ }}1.} \hfill \cr } } \right.\)
2. Ta nhận thấy A \( \in \) mp(P) nên hình chiếu vuông góc của AB trên mp(P) là đường thẳng AH, trong đó H là hình chiếu của điểm B trên mp(P).
Đường thẳng BH qua \(B\left( {0{\rm{ }};{\rm{ }}2{\rm{ }};{\rm{ }}1} \right)\) và vuông góc với mp(P) nên có phương trình
\(\left\{ {\matrix{ {x{\rm{ }} = {\rm{ }}t} \hfill \cr {y{\rm{ }} = {\rm{ }}2{\rm{ }} + {\rm{ }}t} \hfill \cr {z{\rm{ }} = {\rm{ }}1{\rm{ }} + {\rm{ }}t.} \hfill \cr } } \right.\)
Do đó toa độ \(\left( {x;y;z} \right)\) của điểm H thoả mãn hệ: \(\left\{ {\matrix{ {x{\rm{ }} = {\rm{ }}t} \hfill \cr {y{\rm{ }} = {\rm{ }}2{\rm{ }} + {\rm{ }}t} \hfill \cr \matrix{ z{\rm{ }} = {\rm{ }}1{\rm{ }} + {\rm{ }}t \hfill \cr x + y + z - 7 = 0. \hfill \cr} \hfill \cr } } \right.\)
Giải hệ ta được \(t = {4 \over 3} \Rightarrow H = \left( {{4 \over 3};{{10} \over 3};{7 \over 3}} \right)\).
Phương trình đường thẳng AH là
\(\left\{ {\matrix{ {{\rm{x }} = 3 + 5t} \hfill \cr {\;y = 3-t} \hfill \cr {\;z = 1 - 4t.} \hfill \cr } } \right.\)
3. Đường thẳng d nằm trong mp(P), đồng thời nằm trong mặt phẳng trung trực (\(\pi \)) của đoạn AB. Gọi I là trung điếm AB, ta có\(I = \left( {{3 \over 2};{5 \over 2};1} \right).\)
Mặt phẳng (\(\pi \)) đi qua I và có vectơ pháp tuyến là \(\overrightarrow {BA} = \left( {3{\rm{ }};{\rm{ }}1{\rm{ }};{\rm{ }}0} \right)\) nên có phương trình : \(\left( \pi \right):3x + y - 7 = 0.\)
Vậy d là giao tuyến của hai mặt phẳng (P) và (\(\pi \)). Do đó d có phương trình :
\(\left\{ {\matrix{ {{\rm{x = }}t} \hfill \cr \matrix{ y = 7 - 3t \hfill \cr z = 2t. \hfill \cr} \hfill \cr } } \right.\)
4. Vì \(AB \bot mp(\pi )\) và \(d \subset mp(\pi )\)nên nếu trong \(mp(\pi )\), kẻ đường thẳng IM vuông góc với \(d(M \in d)\) thì IM chính là đường vuông góc chung của AB và d.
Ta có \(M = (t;7 - 3t;2t) \)
\(\Rightarrow \overrightarrow {IM} = \left( {t - {3 \over 2};{9 \over 2} - 3t;2t - 1} \right).\)
Đường thẳng d có vec tơ chỉ phương là \(\overrightarrow {{u_d}} = (1; - 3;2).\)
\(IM \bot d \Leftrightarrow \overrightarrow {IM} .\overrightarrow {{u_d}} = 0 \Leftrightarrow t = {{17} \over {14}} \)
\(\Rightarrow \overrightarrow {IM} = \left( { - {4 \over {14}};{{12} \over {14}};{{20} \over {14}}} \right)\)
Vậy đường vuông góc chung của AB và d là đường thẳng qua I và có vec tơ chỉ phương \({{14} \over 4}\overrightarrow {IM} = ( - 1;3;5),\) đường thẳng đó có phương trình :
\(\left\{ \matrix{ x = {3 \over 2} - t \hfill \cr y = {5 \over 2} + 3t \hfill \cr z = 1 + 5t. \hfill \cr} \right.\)
5. Cách 1. \(K \in AB \Rightarrow K = (3 - 3t;3 - t;1).\)
\(\eqalign{ & d(K,(P)) = d(B,(P)) \cr&\Leftrightarrow {{\left| {3 - 3t + 3 - t + 1 - 7} \right|} \over {\sqrt 3 }} = {{\left| {0 + 2 + 1 - 7} \right|} \over {\sqrt 3 }}. \cr & \Leftrightarrow \left| { - 4t} \right| = \left| { - 4} \right| \Leftrightarrow \left| t \right| = 1 \Leftrightarrow \left[ \matrix{ t = 1 \hfill \cr t = - 1. \hfill \cr} \right. \cr} \)
Với t=1, K=(0;2;1) nên \(K \equiv B\((loại).
Với t=-1, K=(6;4;1).
Vậy K(6;4;1) là điểm phải tìm.
Cách 2. Vì \(A \in (P)\) nên \(d(K;(P)) = d(B,(P))\) khi và chỉ khi A là trung điểm của KB. Từ đó suy ra K=(6;4;1).
6. Với \(C \in d\) thì \({S_{ABC}} = {1 \over 2}AB.CI\), AB không đổi nên \({S_{ABC}}\) nhỏ nhất khi và chỉ khi IC nhỏ nhấ, tức C là hình chiếu của I trên d.
Vì \(C \in d\) nên \(C = (t;7 - 3t;2t)\), suy ra \(\overrightarrow {IC} = \left( {t - {3 \over 2};7 - 3t - {5 \over 2};2t - 1} \right)\)
Ta có \(IC \bot d \Leftrightarrow \overrightarrow {IC} .\overrightarrow {{u_d}} = 0\)
\(\Leftrightarrow t - {3 \over 2} - 3\left( {7 - 3t - {5 \over 2}} \right) + 2(2t - 1) = 0\)
\(\Leftrightarrow t = {{17} \over {14}}.\)
Vậy điểm C cần tìm là \(C = \left( {{{17} \over {14}};{{47} \over {14}};{{34} \over {14}}} \right)\)(chính là điểm M ở câu 4).
Sachbaitap.com
>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
Bài viết liên quan
Các bài khác cùng chuyên mục