Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 1.7 trang 18 Sách bài tập (SBT) Hình học 11

Bình chọn:
4.3 trên 4 phiếu

Tìm phép đối xứng trục biến d thành d’

Trong mặt phẳng Oxy cho đường thẳng d có phương trình \(x - 5y + 7 = 0\) và đường thẳng d’ có phương trình \(5x - y - 13 = 0\). Tìm phép đối xứng trục biến d thành d’. 

Giải:

Dễ thấy d và d' không song song với nhau. Do đó trục đối xứng \(\Delta \) của phép đối xứng biến d thành d' chính là đường phân giác của góc tạo bởi d và d' . Từ đó suy ra \(\Delta \) có phương trình:

\(\eqalign{
& {{\left| {x - 5y + 7} \right|} \over {\sqrt {1 + 25} }} = {{\left| {5{\rm{x}} - y - 13} \right|} \over {\sqrt {25 + 1} }} \cr
& \Leftrightarrow x - 5y + 7 = \pm \left( {5{\rm{x}} - y - 13} \right) \cr} \) 

Từ đó tìm được hai phép đối xứng qua các trục:

\(\Delta_1 \) có phương trình \(x + y - 5 = 0\), \(\Delta_2 \) có phương trình \(x - y - 1 = 0\).

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.

Bài viết liên quan