Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 17 trang 56 Sách bài tập Hình học lớp 12 Nâng cao

Bình chọn:
4.9 trên 7 phiếu

Trong số các hình chóp tam giác đều ngoại tiếp

Trong số các hình chóp tam giác đều ngoại tiếp một mặt cầu bán kính r cho trước, tìm hình chóp có diện tích toàn phần nhỏ nhất.

Giải

Kí hiệu cạnh đáy của hình chóp là a, chiều cao là h, thể tích khối chóp là V, diện tích toàn phần là Stp thì \(r = {{3V} \over {{S_{tp}}}}\), tức là \({S_{tp}} = {{3V} \over r}\). Vậy Stp nhỏ nhất khi và chỉ khi V nhỏ nhất.

Mặt khác, cũng từ hệ thức \({S_{tp}} = {{3V} \over r}\), ta có hệ thức liên hệ giữa a, hr

\(\eqalign{  & r = {{ah} \over {a + \sqrt {{a^2} + 12{h^2}} }}\;\;\;\;(1)  \cr  & \left( {V = {1 \over 3}.{{{a^2}\sqrt 3 } \over 4}.h = {{\sqrt 3 } \over {12}}{a^2}.h} \right). \cr} \)

Gọi M là trung diểm của BC và đặt \(\widehat {SMH}\) =\(\varphi \)  (đó là góc giữa mp(SBC)mp(ABC), cũng là góc giữa mặt bên và mặt đáy của hình chóp). Khi ấy

\(h = {{a\sqrt 3 } \over 6}\tan \varphi \;\;\;\;(2)\)

Thay (2) vào (1), ta có \(a = {{6r(\cos \varphi  + 1)} \over {\sqrt 3 \sin \varphi }},\) từ đó thay vào (2), ta có \(h = {{r(\cos \varphi  + 1)} \over {\cos \varphi }}\)

Suy ra \({a^2} = 12{r^2}{{1 + \cos \varphi } \over {1 - \cos \varphi }},\)

Vậy

 \(\eqalign{   V& = {{\sqrt 3 } \over {12}}.12{r^2}.{{1 + \cos \varphi } \over {1 - \cos \varphi }}.r.{{1 + \cos \varphi } \over {\cos \varphi }}  \cr  &  = \sqrt 3 .{r^3}{{{{(1 + \cos \varphi )}^2}} \over {{\rm{cos}}\varphi {\rm{(1 - cos}}\varphi {\rm{)}}}} = \sqrt 3 .{r^3}{{{{(1 + t)}^2}} \over {t(1 - t)}} \cr} \)

với \(0<t=cos\varphi  <1\).

Xét hàm số \(f(t) = {{{{(1 + t)}^2}} \over {t(1 - t)}},0 < t < 1,\) thì V nhỏ nhất khi và chỉ khi f(t) nhỏ nhất.

Ta có:

\(\eqalign{
 f'(t) &= {{2\left( {1 + t} \right)t\left( {1 - t} \right) - {{\left( {1 + t} \right)}^2}\left( {1 - 2t} \right)} \over {{t^2}{{\left( {1 - t} \right)}^2}}} \cr
& = {{2\left( {t - {t^3}} \right) - \left( {1 - 3{t^2} - 2{t^3}} \right)} \over {{t^2}{{\left( {1 - t} \right)}^2}}} \cr
& = {{3{t^2} + 2t - 1} \over {{t^2}{{\left( {1 - t} \right)}^2}}} \cr} \)

\(f'(t) = 0 \Leftrightarrow t = {1 \over 3}.\)

Xét bảng biến thiên sau

 

Vậy f(t) đạt giá trị nhỏ nhất khi và chỉ khi \(t = {1 \over 3}\), tức là \(\cos \varphi  = {1 \over 3}.\) Khi đó h=4r, \(\tan \varphi  = 2\sqrt 2 ,\) từ đó \(a = 2r\sqrt 6 .\)

Vậy khi \(a = 2r\sqrt 6 \), \(h=4r\) thì diện tích toàn phần của hình chóp đạt giá trị nhỏ nhất.

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 Nâng cao - Xem ngay

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Bài viết liên quan