Loigiaihay.com 2023

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.13 trang 63 sách bài tập (SBT) – Hình học 12

Bình chọn:
4 trên 2 phiếu

Trong mặt phẳng cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với ta lấy một điểm S tùy ý, dựng mặt phẳng đi qua A và vuông góc với đường thẳng SC. Mặt phẳng cắt SB, SC, SD lần lượt tại B’ , C’, D’.

Trong mặt phẳng \((\alpha )\) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng Ax vuông góc với \((\alpha )\) ta lấy một điểm S tùy ý, dựng mặt phẳng \((\beta )\) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng \((\beta )\) cắt SB, SC, SD lần lượt tại B’ , C’, D’.

a) Chứng minh rằng các điểm A, B, C, D, B’, C’ , D’ luôn luôn thuộc một mặt cầu cố định.

b) Tính diện tích của mặt cầu đó và tính thể tích khối cầu được tạo thành.

Hướng dẫn làm bài:

a) Ta có  \(\left\{ {\matrix{{BC \bot AB} \cr {BC \bot SA} \cr} } \right.\Rightarrow BC \bot (SAB) \Rightarrow BC \bot AB'\)

Ta lại có \(AB' \bot SC\) nên suy ra \(AB' \bot (SBC)\). Do đó \(AB' \bot B'C\)

Chứng minh tương tự ta có \(AD' \bot D'C\).

Vậy  \(\widehat {ABC} = \widehat {AB'C} = \widehat {AC'C} = \widehat {AD'C} = \widehat {ADC} = {90^0}\)

Từ đó suy ra 7 điểm A, B, C, D, B’ , C’, D’ cùng nằm trên mặt cầu đường kính là AC.

b) Gọi r là bán kính mặt cầu, ta có \(r = {{AC} \over 2} = {{a\sqrt 2 } \over 2}\)

Vậy  \(S = 4\pi {r^2} = 4\pi {({{a\sqrt 2 } \over 2})^2} = 2\pi {a^2}\) và \(V = {4 \over 3}\pi {r^3} = {4 \over 3}\pi {({{a\sqrt 2 } \over 2})^3} = {1 \over 3}\pi {a^3}\sqrt 2 \)

Sachbaitap.com

Bài tiếp theo

Xem lời giải SGK - Toán 12 - Xem ngay

>> Luyện thi TN THPT & ĐH năm 2023 trên trang trực tuyến Tuyensinh247.com. Học mọi lúc, mọi nơi với Thầy Cô giáo giỏi, đầy đủ các khoá: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng; Tổng ôn chọn lọc.

Bài viết liên quan