Xác định m để bất phương trình sau nghiệm đúng với mọi x ∈ R
a) \(f'\left( x \right) > 0\) với \(f\left( x \right) = {m \over 3}{x^3} - 3{x^2} + mx - 5\) ;
b) \(g'\left( x \right) < 0\) với \(g\left( x \right) = {m \over 3}{x^3} - {m \over 2}{x^2} + \left( {m + 1} \right)x - 15.\)
Giải:
a) m > 3
b) \(m < - {4 \over 3}.\)
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM; 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục