Xác định m để bất phương trình sau nghiệm đúng với mọi x ∈ R
a) \(f'\left( x \right) > 0\) với \(f\left( x \right) = {m \over 3}{x^3} - 3{x^2} + mx - 5\) ;
b) \(g'\left( x \right) < 0\) với \(g\left( x \right) = {m \over 3}{x^3} - {m \over 2}{x^2} + \left( {m + 1} \right)x - 15.\)
Giải:
a) m > 3
b) \(m < - {4 \over 3}.\)
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục