Bài 22 trang 15 SGK Toán lớp 9 tập 1
Câu hỏi:
Biến đổi các biểu thức dưới dấu căn thành dạng tích rồi tính:
a) \( \sqrt{13^{2}- 12^{2}}\); b) \( \sqrt{17^{2}- 8^{2}}\);
c) \( \sqrt{117^{2} - 108^{2}}\); d) \( \sqrt{313^{2} - 312^{2}}\).
Lời giải:
Câu a: Ta có:
\(\sqrt{13^{2}- 12^{2}}=\sqrt{(13+12)(13-12)}\)
\(=\sqrt{25.1}=\sqrt{25}\)
\(=\sqrt{5^2}=|5|=5\).
Câu b: Ta có:
\(\sqrt{17^{2}- 8^{2}}=\sqrt{(17+8)(17-8)}\)
\(=\sqrt{25.9}=\sqrt{25}.\sqrt{9}\)
\(=\sqrt{5^2}.\sqrt{3^2}=|5|.|3|\).
\(=5.3=15\).
Câu c: Ta có:
\(\sqrt{117^{2} - 108^{2}} =\sqrt{(117-108)(117+108)}\)
\(=\sqrt{9.225}\) \(=\sqrt{9}.\sqrt{225}\)
\(=\sqrt{3^2}.\sqrt{15^2}=|3|.|15|\)
\(=3.15=45\).
Câu d: Ta có:
\(\sqrt{313^{2} - 312^{2}}=\sqrt{(313-312)(313+312)}\)
\(=\sqrt{1.625}=\sqrt{625}\)
\(=\sqrt{25^2}=|25|=25\).
Bài 23 trang 15 SGK Toán lớp 9 tập 1
Câu hỏi:
Chứng minh.
a) \((2 - \sqrt{3})(2 + \sqrt{3}) = 1\);
b) \((\sqrt{2006} - \sqrt{2005})\) và \((\sqrt{2006} + \sqrt{2005})\) là hai số nghịch đảo của nhau.
Phương pháp:
Sử dụng các công thức sau:
+) \(a^2-b^2=(a-b)(a+b)\).
+) \((\sqrt{a})^2=a\), với \(a \ge 0\).
+) Muốn chứng minh hai số là nghịch đảo của nhau ta chứng minh tích của chúng bằng \(1\).
Lời giải:
Câu a: Ta có:
\((2 - \sqrt{3})(2 + \sqrt{3})=2^2-(\sqrt{3})^2=4-3=1\)
Câu b:
Ta tìm tích của hai số \((\sqrt{2006} - \sqrt{2005})\) và \((\sqrt{2006} + \sqrt{2005})\)
Ta có:
\((\sqrt{2006} + \sqrt{2005}).(\sqrt{2006} - \sqrt{2005})\)
= \((\sqrt{2006})^2-(\sqrt{2005})^2\)
\(=2006-2005=1\)
Do đó \( (\sqrt{2006} + \sqrt{2005}).(\sqrt{2006} - \sqrt{2005})=1\)
\(\Leftrightarrow \sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)
Vậy hai số trên là nghịch đảo của nhau.
Bài 24 trang 15 SGK Toán lớp 9 tập 1
Câu hỏi:
Rút gọn và tìm giá trị (làm tròn đến chữ số thập phân thứ ba) của các căn thức sau:
\(a)\) \( \sqrt{4(1 + 6x + 9x^{2})^{2}}\) tại \(x = - \sqrt 2 \);
\(b)\) \( \sqrt{9a^{2}(b^{2} + 4 - 4b)}\) tại \(a = - 2;\,\,b = - \sqrt 3 \).
Lời giải:
a) Ta có:
\( \sqrt{4(1 + 6x + 9x^{2})^{2}}\) \(=\sqrt {4}. \sqrt {{{(1 + 6x + 9{x^2})}^2}} \)
\(=\sqrt{4}.\sqrt{(1+2.3x+3^2.x^2)^2}\)
\(=\sqrt{2^2}.\sqrt{\left[1^2+2.3x+(3x)^2\right]^2}\)
\(=2.\sqrt {{{\left[ {{{\left( {1 + 3x} \right)}^2}} \right]}^2}} \)
\(=2.\left|(1+3x)^2\right|\)
\(=2(1+3x)^2\).
(Vì \( (1+3x)^2 > 0 \) với mọi \(x\) nên \(\left|(1+3x)^2\right|=(1+3x)^2 \))
Thay \(x = - \sqrt 2 \) vào biểu thức rút gọn trên, ta được:
\( 2{\left[ {1 + 3.(-\sqrt 2) } \right]^2}=2(1-3\sqrt{2})^2\).
Bấm máy tính, ta được: \( 2{\left( {1 - 3\sqrt 2 } \right)^2} \approx 21,029\).
b) Ta có:
\( \sqrt{9a^{2}(b^{2} + 4 - 4b)} =\sqrt{3^2.a^2.(b^2-4b+4)}\)
\(=\sqrt{(3a)^2.(b^2-2.b.2+2^2)}\)
\(=\sqrt{(3a)^2}. \sqrt{(b-2)^2}\)
\(=\left|3a\right|. \left|b-2\right| \)
Thay \(a = -2\) và \(b = - \sqrt 3 \) vào biểu thức rút gọn trên, ta được:
\(\left| 3.(-2)\right|. \left| -\sqrt{3}-2\right| =\left|-6\right|.\left|-(\sqrt{3}+2) \right|\)
\(=6.(\sqrt{3}+2)=6\sqrt{3}+12\).
Bấm máy tính, ta được: \(6\sqrt{3}+12 \approx 22,392\).
Bài 25 trang 16 SGK Toán lớp 9 tập 1
Câu hỏi:
Tìm \(x\) biết:
a) \( \sqrt{16x}= 8\); b) \( \sqrt{4x} = \sqrt{5}\);
c) \( \sqrt{9(x - 1)} = 21\); d) \( \sqrt{4(1 - x)^{2}}- 6 = 0\).
Phương pháp:
- Đặt điều kiện để biểu thức có nghĩa: \(\sqrt A \) có nghĩa khi và chỉ khi \(A \ge 0\)
- Bình phương hai vế rồi giải bài toán tìm x.
- Ta sử dụng các cách làm sau:
\(\sqrt A = B\left( {B \ge 0} \right) \Leftrightarrow A = {B^2}\)
\(\sqrt A = \sqrt B \left( {A \ge 0;B \ge 0} \right) \Leftrightarrow A = B\)
Lời giải:
a) Điều kiện: \(x \ge 0\)
\(\sqrt {16x} = 8\)\( \Leftrightarrow {\left( {\sqrt {16x} } \right)^2} = {8^2}\) \( \Leftrightarrow 16x = 64\) \( \Leftrightarrow x = \dfrac{{64}}{{16}} \Leftrightarrow x = 4\) (thỏa mãn điều kiện)
Vậy \(x=4\).
Cách khác:
\(\begin{array}{l}
\sqrt {16x} = 8 \Leftrightarrow \sqrt {16} .\sqrt x = 8\\
\Leftrightarrow 4\sqrt x = 8 \Leftrightarrow \sqrt x = 2\\
\Leftrightarrow x = {2^2} \Leftrightarrow x = 4
\end{array}\)
b) Điều kiện: \(4x \ge 0 \Leftrightarrow x \ge 0\)
\(\sqrt {4x} = \sqrt 5 \) \( \Leftrightarrow {\left( {\sqrt {4x} } \right)^2} = {\left( {\sqrt 5 } \right)^2} \Leftrightarrow 4x = 5 \Leftrightarrow x = \dfrac{5}{4}\) (thỏa mãn điều kiện)
Vậy \(x=\dfrac{5}{4}\).
c) Điều kiện: \(9\left( {x - 1} \right) \ge 0 \Leftrightarrow x - 1 \ge 0 \Leftrightarrow x \ge 1\)
\(\sqrt {9\left( {x - 1} \right)} = 21\)\( \Leftrightarrow 3\sqrt {x - 1} = 21\)\( \Leftrightarrow \sqrt {x - 1} = 7\) \( \Leftrightarrow x - 1 = 49 \Leftrightarrow x = 50\) (thỏa mãn điều kiện)
Vậy \(x=50\).
Cách khác:
\(\begin{array}{l}
\sqrt {9\left( {x - 1} \right)} = 21 \Leftrightarrow 9\left( {x - 1} \right) = {21^2}\\
\Leftrightarrow 9\left( {x - 1} \right) = 441 \Leftrightarrow x - 1 = 49\\
\Leftrightarrow x = 50
\end{array}\)
d) Điều kiện: \(x \in R\) (vì \(4.(1-x)^2\ge 0\) với mọi \(x)\)
\(\sqrt {4{{\left( {1 - x} \right)}^2}} - 6 = 0\)\( \Leftrightarrow 2\sqrt {{{\left( {1 - x} \right)}^2}} = 6\) \( \Leftrightarrow \left| {1 - x} \right| = 3\) \( \Leftrightarrow \left[ \begin{array}{l}1 - x = 3\\1 - x = - 3\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = - 2\\x = 4\end{array} \right.\)
Vậy \(x=-2;x=4.\)
Bài 26 trang 16 SGK Toán lớp 9 tập 1
Câu hỏi:
a) So sánh \( \sqrt{25 + 9}\) và \( \sqrt{25} + \sqrt{9}\);
b) Với \(a > 0\) và \(b > 0\), chứng minh \( \sqrt{a + b} < \sqrt{a}+\sqrt{b}\).
Phương pháp:
+) Sử dụng định lí so sánh hai căn bậc hai:
\(a < b \Leftrightarrow \sqrt{a} < \sqrt{b}\), với \(a,\ b \ge 0\).
+) Sử dụng các công thức: với \(a ,\ b \ge 0\) , ta có:
\((\sqrt{a})^2=a\).
\(\sqrt{a}.\sqrt{b}=\sqrt{ab}\).
Lời giải:
a) Ta có:
\(+) \sqrt{25 + 9}=\sqrt{34}\).
\(+) \sqrt{25} + \sqrt{9}=\sqrt{5^2}+\sqrt{3^2}=5+3\)
\(=8=\sqrt{8^2}=\sqrt{64}\).
Vì \(34<64\) nên \(\sqrt{34}<\sqrt{64}\)
Vậy \(\sqrt{25 + 9}<\sqrt{25} + \sqrt{9}\)
b) Với \(a>0,b>0\), ta có
\(+)\, (\sqrt{a + b})^{2} = a + b\).
\(+) \,(\sqrt{a} + \sqrt{b})^{2}= (\sqrt{a})^2+ 2\sqrt a .\sqrt b +(\sqrt{b})^2\)
\( = a +2\sqrt{ab} + b\)
\(=(a+b) +2\sqrt{ab}\).
Vì \(a > 0,\ b > 0\) nên \(\sqrt{ab} > 0 \Leftrightarrow 2\sqrt{ab} >0\)
\(\Leftrightarrow (a+b) +2\sqrt{ab} > a+b\)
\(\Leftrightarrow (\sqrt{a}+\sqrt{ b})^2 > (\sqrt{a+b})^2\)
\(\Leftrightarrow \sqrt{a}+\sqrt{b}>\sqrt{a+b}\) (đpcm)
Bài 27 trang 16 SGK Toán lớp 9 tập 1
Câu hỏi:
So sánh
a) \(4\) và \(2\sqrt{3}\); b) \(-\sqrt{5}\) và \(-2\)
Lời giải:
a) Ta có:
\(\begin{array}{l}
4 > 3 \Leftrightarrow \sqrt 4 > \sqrt 3 \\
\Leftrightarrow 2 > \sqrt 3 \\
\Leftrightarrow 2.2 > 2.\sqrt 3 \\
\Leftrightarrow 4 > 2\sqrt 3
\end{array}\)
Cách khác:
Ta có:
\(\left\{ \matrix{
{4^2} = 16 \hfill \cr
{\left( {2\sqrt 3 } \right)^2} = {2^2}.{\left( {\sqrt 3 } \right)^2} = 4.3 = 12 \hfill \cr} \right.\)
Vì \(16> 12 \Leftrightarrow \sqrt {16} > \sqrt 12 \)
Hay \(4 > 2\sqrt 3\).
b) Vì \(5>4 \Leftrightarrow \sqrt 5 > \sqrt 4 \)
\(\Leftrightarrow \sqrt 5 > 2\)
\(\Leftrightarrow -\sqrt 5 < -2\) (Nhân cả hai vế bất phương trình trên với \(-1\))
Vậy \(-\sqrt{5} < -2\).
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục