Giả sử V là thể tích hình trụ tròn xoay với chiều cao h và bán kính đáy r. Chứng minh rằng với r là hằng số thì đạo hàm V'(h) bằng diện tích đáy hình trụ và với h là hằng số thì đạo hàm V'(r) bằng diện tích xung quanh của hình trụ.
Giải:
Vì \(V = \pi {r^2}h\) nên \(V'\left( h \right) = \pi {r^2}\) là diện tích đáy hình trụ;
\(V'\left( r \right) = 2\pi rh\) là diện tích xung quanh của hình trụ.
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục