Cho tứ diện ABCD. Gọi I và J lần lượt là hai điểm di động trên các cạnh AD và BC sao cho \({{IA} \over {I{\rm{D}}}} = {{JB} \over {JC}}\). Chứng minh rằng IJ luôn luôn song song với một mặt phẳng cố định.
Giải:
Qua I kẻ đường thẳng song song với CD cắt AC tại H, ta có:
\({{HA} \over {HC}} = {{IA} \over {I{\rm{D}}}}\)
Mặt khác \({{IA} \over {I{\rm{D}}}} = {{JB} \over {JC}}\)
Nên \({{HA} \over {HC}} = {{JB} \over {JC}}\)
Suy ra \(HJ\parallel AB\)
Như vậy mặt phẳng (IJH) song song với AB và CD.
Gọi \(\left( \alpha \right)\) là mặt phẳng qua AB và song song với CD, ta có
\(\left\{ \matrix{
\left( \alpha \right)\parallel \left( {IJH} \right) \hfill \cr
IJ \subset \left( {IJH} \right) \hfill \cr} \right. \Rightarrow IJ\parallel \left( \alpha \right)\)
Vậy IJ song song với mặt phẳng \(\left( \alpha \right)\) cố định.
Sachbaitap.com
>> Học trực tuyến Lớp 11 cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng. Cam kết giúp học sinh lớp 11 học tốt, hoàn trả học phí nếu học không hiệu quả.
Bài viết liên quan
Các bài khác cùng chuyên mục