Cho tứ diện ABCD. Gọi I và J lần lượt là hai điểm di động trên các cạnh AD và BC sao cho \({{IA} \over {I{\rm{D}}}} = {{JB} \over {JC}}\). Chứng minh rằng IJ luôn luôn song song với một mặt phẳng cố định.
Giải:
Qua I kẻ đường thẳng song song với CD cắt AC tại H, ta có:
\({{HA} \over {HC}} = {{IA} \over {I{\rm{D}}}}\)
Mặt khác \({{IA} \over {I{\rm{D}}}} = {{JB} \over {JC}}\)
Nên \({{HA} \over {HC}} = {{JB} \over {JC}}\)
Suy ra \(HJ\parallel AB\)
Như vậy mặt phẳng (IJH) song song với AB và CD.
Gọi \(\left( \alpha \right)\) là mặt phẳng qua AB và song song với CD, ta có
\(\left\{ \matrix{
\left( \alpha \right)\parallel \left( {IJH} \right) \hfill \cr
IJ \subset \left( {IJH} \right) \hfill \cr} \right. \Rightarrow IJ\parallel \left( \alpha \right)\)
Vậy IJ song song với mặt phẳng \(\left( \alpha \right)\) cố định.
Sachbaitap.com
>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Bài viết liên quan
Các bài khác cùng chuyên mục