Loigiaihay.com 2025

Đã cập nhật bản mới với lời giải dễ hiểu và giải thêm nhiều sách

Xem chi tiết

Bài 2.4 trang 66 Sách bài tập (SBT) Đại số và giải tích 11

Bình chọn:
3.5 trên 4 phiếu

Thầy giáo có ba quyển sách Toán khác nhau cho ba bạn mượn (mỗi bạn một quyển). Sang tuần sau thầy giáo thu lại và tiếp tục cho ba bạn mượn ba quyển đó. Hỏi có bao nhiêu cách cho mượn sách mà không bạn nào phải mượn quyển đã đọc ?

Thầy giáo có ba quyển sách Toán khác nhau cho ba bạn mượn (mỗi bạn một quyển). Sang tuần sau thầy giáo thu lại và tiếp tục cho ba bạn mượn ba quyển đó. Hỏi có bao nhiêu cách cho mượn sách mà không bạn nào phải mượn quyển đã đọc ?

Giải:

Để xác định, ba bạn được đánh số 1, 2, 3.

Kí hiệu \({A_i}\) là tập hợp các cách cho mượn mà bạn thứ i được thầy giáo cho mượn lại cuốn đã đọc lần trước \(\left( {i = 1,2,3} \right)\)

Kí hiệu X là tập hợp các cách cho mượn lại.

Theo bài ra cần tính \(n\left[ {X\backslash \left( {{A_1} \cup {A_2} \cup {A_3}} \right)} \right]\)

Ta có:

\(\eqalign{
& n\left( {{A_1} \cup {A_2} \cup {A_3}} \right) \cr
& = n\left( {{A_1}} \right) + n\left( {{A_2}} \right) + n\left( {{A_3}} \right) - n\left( {{A_1} \cup {A_2}} \right) - n\left( {{A_1} \cup {A_3}} \right) - n\left( {{A_2} \cup {A_3}} \right) + n\left( {{A_1} \cap {A_2} \cap {A_3}} \right) \cr
& = 2! + 2! + 2! - 1 - 1 - 1 + 1 = 4 \cr
& n\left( X \right) = 3! = 6 \cr} \)

Từ đó \(n\left[ {X\backslash \left( {{A_1} \cup {A_2} \cup {A_3}} \right)} \right] = 6 - 4 = 2\) .

Bài tiếp theo

Xem lời giải SGK - Toán 11 - Xem ngay

>> 2K8! chú ý! Mở đặt chỗ Lộ trình Sun 2026: Luyện thi chuyên sâu TN THPT, Đánh giá năng lực, Đánh giá tư duy tại Tuyensinh247.com (Xem ngay lộ trình). Ưu đãi -70% (chỉ trong tháng 3/2025) - Tặng miễn phí khoá học tổng ôn lớp 11, 2K8 xuất phát sớm, X2 cơ hội đỗ đại học. Học thử miễn phí ngay.

Bài viết liên quan