Bài 26 trang 80 SGK Toán lớp 8 tập 1
Câu hỏi:
Tính \(x, y\) trên hình \(45\), trong đó \(AB // CD // EF // GH.\)
Phương pháp
Áp dụng tính chất: Đường trung bình của hình thang thì song song với hai đáy và bằng nửa tổng hai đáy.
Lời giải:
+) Tính x:
Xét tứ giác ABFE, có: AB // EF nên tứ giác ABFE là hình thang
Hình thang ABFE có:
CA = CE nên C là trung điểm của AE
DB = DF nên D là trung điểm của BF
⇒ CD là đường trung bình của hình thang ABFE
Bài 27 trang 80 SGK Toán lớp 8 tập 1
Câu hỏi:
Cho tứ giác \(ABCD.\) Gọi \(E, F, K\) theo thứ tự là trung điểm của \(AD, BC, AC.\)
a) So sánh các độ dài \(EK\) và \(CD, KF\) và \(AB.\)
b) Chứng minh rằng \(EF ≤ \dfrac{AB+CD}{2}\).
Phương pháp:
Áp dụng:
- Đường trung bình của tam giác là đoạn thẳng nối trung điểm hai cạnh của tam giác.
- Trong tam giác tổng độ dài hai cạnh bất kì lớn hơn độ dài cạnh còn lại.
- Định lí: Đường trung bình của tam giác thì song song với cạnh thứ ba và bằng nửa cạnh ấy.
Lời giải:
Bài 28 trang 80 SGK Toán lớp 8 tập 1
Câu hỏi:
Cho hình thang \(ABCD\) (\(AB // CD\)), \(E\) là trung điểm của \(AD,\) \(F\) là trung điểm của \(BC.\) Đường thẳng \(EF\) cắt \(BD\) ở \(I,\) cắt \(AC\) ở \(K.\)
a) Chứng minh rằng \(AK = KC, BI = ID.\)
b) Cho \(AB = 6\,cm, CD = 10\,cm.\) Tính các độ dài \(EI, KF, IK.\)
Phương pháp:
Cho hình thang \(ABCD\) (\(AB // CD\)), \(E\) là trung điểm của \(AD,\) \(F\) là trung điểm của \(BC.\) Đường thẳng \(EF\) cắt \(BD\) ở \(I,\) cắt \(AC\) ở \(K.\)
a) Chứng minh rằng \(AK = KC, BI = ID.\)
b) Cho \(AB = 6\,cm, CD = 10\,cm.\) Tính các độ dài \(EI, KF, IK.\)
Lời giải:
a) + Xét hình thang ABCD có:
E là trung điểm của AD (gt)
F là trung điểm của BC (gt)
⇒ EF là đường trung bình của hình thang ABCD.
⇒ EF // AB // CD
+ Xét ΔABC có:
F là trung điểm BC (gt)
FK // AB (cmt)
⇒ K là trung điểm của AC hay AK = KC.
+ Xét ΔABD có:
E là trung điểm của AD (gt)
EI // AB (cmt)
⇒ I là trung điểm của BD hay BI = ID
b) + Xét hình thang ABCD có:
EF là đường trung bình của hình thang ABCD.
Sachbaitap.com
Bài viết liên quan
Các bài khác cùng chuyên mục